matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenRand bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Rand bestimmen
Rand bestimmen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rand bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:29 Do 09.08.2012
Autor: sqflo

Aufgabe
Sei M die Menge der beschränkten Funktionen auf dem Intervall $[0,1]$, ausgestattet mit der Metrik [mm] $d(f,g)=sup_{x\in[0,1]}|f(x)-g(x)|$. [/mm]

Sei A die menge der konstanten rellen Funktionen auf dem Intervall $[0,1]$. Bestimmen Sie den Rand von A im Metrischen Raum


$(i)$ Wir zeigen [mm] $A\subset\partial [/mm] A$:

sei [mm] $f\in [/mm] A$, es gibt also ein [mm] $c\in\mathbb{R}$ [/mm] mit $f(x)=c$ [mm] $\forall x\in[0,1]$.sei $\varepsilon [/mm] >0$. setze

[mm] g(x)=\begin{cases} c, & x=0 \\ c+\frac{\varepsilon}{2}, & x\in (0,1]\end{cases} [/mm]

dann ist [mm] $d(g,f)=\varepsilon/2$<\varepsilon$. [/mm] also ist jedes element von A ein Randpunkt.

$(ii)$ Wir zeigen [mm] $\partial A\cap (M\setminus A)=\emptyset$ [/mm]

sei [mm] $f\in M\setminus [/mm] A$. f ist nicht konstant und deswegen gibt es [mm] $x,y\in[0,1]$, [/mm] sodass [mm] $f(x)\neq [/mm] f(y)$. Wähle [mm] $\varepsilon>0$ [/mm] so, dass [mm] $2\varepsilon<|f(x)-f(y)|$ [/mm] gilt. Dann folgt für jedes [mm] $c\in\mathbb{R}$: [/mm]

[mm] $2\varepsilon<|f(x)-f(y)|=|f(x)-c+c-f(y)|\le [/mm] |f(x)-c|+|c-f(y)| [mm] \le 2\cdot [/mm] d(f,g)$, also gilt [mm] $\varepsilon
also gilt [mm] $\partial [/mm] A=A$. (der rand von A ist A selbst)


ist diese überlegung richtig?


lg
flo


        
Bezug
Rand bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 Do 09.08.2012
Autor: fred97


> Sei M die Menge der beschränkten Funktionen auf dem
> Intervall [mm][0,1][/mm], ausgestattet mit der Metrik
> [mm]d(f,g)=sup_{x\in[0,1]}|f(x)-g(x)|[/mm].
>  
> Sei A die menge der konstanten rellen Funktionen auf dem
> Intervall [mm][0,1][/mm]. Bestimmen Sie den Rand von A im Metrischen
> Raum
>  
> [mm](i)[/mm] Wir zeigen [mm]A\subset\partial A[/mm]:
>  
> sei [mm]f\in A[/mm], es gibt also ein [mm]c\in\mathbb{R}[/mm] mit [mm]f(x)=c[/mm]
> [mm]\forall x\in[0,1][/mm].sei [mm]\varepsilon >0[/mm]. setze
>  
> [mm]g(x)=\begin{cases} c, & x=0 \\ c+\frac{\varepsilon}{2}, & x\in (0,1]\end{cases}[/mm]
>  
> dann ist [mm]$d(g,f)=\varepsilon/2$<\varepsilon$.[/mm] also ist
> jedes element von A ein Randpunkt.

Vielleicht solltest Du das noch etwas ausführlicher begründen: ist f [mm] \in [/mm] A, so enthält jede  [mm] \varepsilon [/mm] - Umgebung von f, sowohl Punkte aus A (nämlich f) als auch Punkte aus M \ A (nämlich obiges g)


>  
> [mm](ii)[/mm] Wir zeigen [mm]\partial A\cap (M\setminus A)=\emptyset[/mm]
>  
> sei [mm]f\in M\setminus A[/mm]. f ist nicht konstant und deswegen
> gibt es [mm]x,y\in[0,1][/mm], sodass [mm]f(x)\neq f(y)[/mm]. Wähle
> [mm]\varepsilon>0[/mm] so, dass [mm]2\varepsilon<|f(x)-f(y)|[/mm] gilt. Dann
> folgt für jedes [mm]c\in\mathbb{R}[/mm]:
>  
> [mm]2\varepsilon<|f(x)-f(y)|=|f(x)-c+c-f(y)|\le |f(x)-c|+|c-f(y)| \le 2\cdot d(f,g)[/mm],
> also gilt [mm]\varepsilon
> [mm][0,1][/mm]

Auch hier solltest Du etwas ausfühlicher sein:

Du hast gezeigt: ist f [mm] \notin [/mm] A, so ex. ein [mm] \varepsilon [/mm] > 0 mit: d(f,g)> [mm] \varepsilon [/mm] für alle g [mm] \in [/mm] A. Damit kann f kein Randpunkt von A sein.

Also: M \ A [mm] \subset [/mm] M \  [mm] \partial [/mm] A.

Oder: [mm] \partial [/mm] A [mm] \subset [/mm] A.

>  
> also gilt [mm]\partial A=A[/mm]. (der rand von A ist A selbst)
>  
>
> ist diese überlegung richtig?

Ja.

FRED

>  
>
> lg
>  flo
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]