matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRang
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Rang
Rang < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Do 04.12.2008
Autor: Arina

Aufgabe
Seien A,B Matrizen mit Einträgen aus einem Körper, so dass A*B definiert ist.
Untersuchen Sie, ob folgende Aussagen wahr sind:
(i) rg(A*B) [mm] \le [/mm] rg(A)
(ii) rg (A*B) [mm] \le [/mm] rg(B)

Hallo zusammen!
Die Aussagen sind doch falsch, oder?
Ich habe Paar Beispielen gemacht, und die zeigen mir, dass der Rang des Produkts größer gleich Rang von A bzw. von B ist? Stimmt das, dass die zwei Aussagen falsch sind????
Gruß, Arina

        
Bezug
Rang: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Do 04.12.2008
Autor: Herby

Hallo,

im allg. gilt:  [mm] Rang(A\* B)\le min\{Rang(A),Rang(B\} [/mm]


Liebe Grüße
Herby

Bezug
                
Bezug
Rang: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Do 04.12.2008
Autor: Arina

danke schön für deine Anwort!
aber wie kann ich das zeigen? weil wenn ich i-welche matrizen nehme, dann geht bei mir, dass der rang des produkts größer oder gleich dem rang von A bzw. von B ist, und das widerspricht doch....

Bezug
                        
Bezug
Rang: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Do 04.12.2008
Autor: fred97


> danke schön für deine Anwort!
>  aber wie kann ich das zeigen? weil wenn ich i-welche
> matrizen nehme, dann geht bei mir, dass der rang des
> produkts größer oder gleich dem rang von A bzw. von B ist,
> und das widerspricht doch....



Nein. Aussage (1): [mm] a\le [/mm] b.      Aussage (2)  a [mm] \ge [/mm] b.

Widersprechen sich diese beiden Aussagen ?

FRED

Bezug
                                
Bezug
Rang: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Do 04.12.2008
Autor: Arina

was für (1) und (2)?????
ich muss die zwei aussagen untersuchen:
rg(a*b)<= rg (a)
rg(a*b)<= rg (b)

und wenn ich z.B die a= (1 5
                         2 2
                         3 1)
und die b= (1 2 3 5 1
            2 4 3 1 3)
betracht, dann kommt raus
a*b= (11 22 18 10 16
      5  12 12 12  8
      5  10 12 16  9)

=>  2=rg(a) < rg(a*b)=5

und das widerspricht doch der Aussage!!!

Bezug
                                        
Bezug
Rang: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Do 04.12.2008
Autor: Herby

Hallo [hand]

bin wieder da.

> was für (1) und (2)?????

>  ich muss die zwei aussagen untersuchen:
>  (1)  rg(a*b)<= rg (a)
>  (2)  rg(a*b)<= rg (b)

genau, nämlich (1) und (2) ;-)


Wenn du jetzt noch meinen Spruch von vorhin dazu nimmst, dann ergibt auch sicher die Aussage von Fred einen Sinn für dich - wir ergänzen uns quasi (ähm - nicht oft, aber manchmal)

[mm] $Rang(A\*B)\ \le\ [/mm] min\ [mm] \{Rang(A),Rang(B)\}$ [/mm]

Dann ist bei (1)  $a\ [mm] \le\ [/mm] b$
und bei (2)  $b\ [mm] \le\ [/mm] a$

mit a bzw. b ist abkürzend der Rang gemeint

Nun klarer?

>  
> und wenn ich z.B die a= (1 5
>                           2 2
>                           3 1)
>  und die b= (1 2 3 5 1
> 2 4 3 1 3)
>  betracht, dann kommt raus
>  a*b= (11 22 18 10 16
>        5  12 12 12  8
>        5  10 12 16  9)
>  
> =>  2=rg(a) < rg(a*b)=5

kleiner mistake :-)  Du hast als Produkt eine 3x5-Matrix - und wir wissen aus der Vorlesung, dass der Rang eine Matrix maximal was sein kann???

Genau, also fällt die 5 schon mal ins Wasser. Bringst du das Ding auf Zeilenstufenform, dann bekommst du schnell in der letzten Zeile ein 00000-Reihe. Ergo: Rang 2 und alles ist im grünen Bereich.


Liebe Grüße
Herby

Bezug
                                                
Bezug
Rang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Fr 05.12.2008
Autor: Arina

Vielen vielen Dank!!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]