matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRang Basis Demens einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Rang Basis Demens einer Matrix
Rang Basis Demens einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang Basis Demens einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:00 Do 15.09.2016
Autor: Jura86

Aufgabe
Berechnen Sie die Lösungsmengen zu den folgenden Gleichungssystemen A* [mm] \vec{x}= \vec{b} [/mm]
Bestimmen Sie außerdem den Rang der Matrix A, sowie eine Basis und die Dimension vonL [mm] (A/\vec{0}). [/mm]

Guten Tag !

Ich habe hier eine Aufgabe gelöst, und würde gerne jemanden bitte kurz zu schauen ob ich das richtig gemacht habe.

Aufgabenstellung :

A = [mm] \begin{pmatrix} 2 & 1 & 2 & 7\\ 1 & 3 & 1 & 4 \\ 0 & 4 & 3 & 1\\ 2 & 0 & 2 & 4 \end{pmatrix} [/mm] , b = [mm] \begin{pmatrix} 2 \\ 1 \\ 4 \\-12\\ \end{pmatrix} [/mm]


Meine Umgeformte Matrix sieht so aus
[mm] \begin{pmatrix} 1 & 1 & 3 & 4 &|1\\ 0 & 3 & 4 & 1 &|4\\ 0 & 0 & -5 &-1&|0\\ 0 & 0 & 0 & - \bruch{7}{15}|&\bruch{7}{3} \end{pmatrix} [/mm]


Danach habe ich X1, X2, X3, X4, X5 berechnet
[mm] x_{1} [/mm] =  [mm] \bruch{49}{3} [/mm]
[mm] x_{2} [/mm] =  [mm] \bruch{5}{3} [/mm]
[mm] x_{3} [/mm] =  1
[mm] x_{4} [/mm] =  -5


Und als Antwort würde ich sagen
Dass das LGS genau eine Lösung hat
Rang Rg (A)   = 4
       Rg (A/b) = 4


Ist das soweit okay oder ist es völlig falsch ?
Wenn der Rechenweg falsch ist, was muss ich denn machen ?
Habe ich die Aufgabe überhaupt komplett gelöst ?

Vielen Dank in Vorraus!!



        
Bezug
Rang Basis Demens einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 01:44 Do 15.09.2016
Autor: leduart

Hallo
ich hab deine Matrx nicht überpruft. , die hast du mindest auf ungewohnte Weise umgeformt.  aber deine Werte in die erste Gleichung eingesetzt. die stimmt nicht also sind sie falsch.
so rasch die Probe machen solltest du auch
ich empfehle dir zum nachrechnen
lineare Gleichungen
kreuz unbedingt an Erklärungen erzeugen.
Gruß leduart

Bezug
                
Bezug
Rang Basis Demens einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:36 Mo 19.09.2016
Autor: Jura86

Aufgabe
Berechnen Sie die Lösungsmengen zu den folgenden Gleichungssystemen A* [mm] \vec{x}= \vec{b} [/mm]
Bestimmen Sie außerdem den Rang der Matrix A, sowie eine Basis und die Dimension von L [mm] (A/\vec{0}) [/mm]

Ich denke es ist besser wenn ich die Schritte noch genauer hinschreiben damit man besser sieht was ich da veranstaltet haben:

Gegebene Werte :
  [mm] \begin{pmatrix} 2 & 1 & 2 & 7\\ 1 & 3 & 1 & 4 \\ 0 & 4 & 3 &1\\ 2 & 0 & 2& 4 \end{pmatrix} ,\vec{b} [/mm] = [mm] \begin{pmatrix}2\\ 1 \\ 4\\ -12\\ \end{pmatrix} [/mm]
Zeilentausch
[mm] \begin{pmatrix} 1 & 3 & 1 & 4 &|1 \\ 2 & 1 & 2 & 7 &|2\\ 2 &0& 2 & 4 &|-12\\ 0 & 4 & 3& 1&|4 \end{pmatrix} [/mm]  

II=II - [mm] (2\cdot [/mm] I)
III=III - [mm] (2\cdot [/mm] I)
III=III - [mm] (2\cdot [/mm] I)


III       = >   2   0   2   4   -12
         -
[mm] (2\cdot [/mm] I)  = >   2   6   2   8    2
      III  =    0   -6   0  -4   -14


II=II - [mm] (2\cdot [/mm] I)

II       = >   2   1   2   7   2
         -
[mm] (k\cdot [/mm] I)  = >  2   6   2   8   2
      II  =    0  -5   0  -1   0


[mm] \begin{pmatrix} 1 & 3 & 1 & 4 &|1 \\ 0 & 4 & 3 & 1 &|4\\ 0 & -5 & 0 & -1 &|0\\ 0 & -6 & 0& -4&|-14 \end{pmatrix} [/mm]  
Zeilentausch
[mm] \begin{pmatrix} 1 & 3 & 1 & 4 &|1 \\ 0 & -5 & 0 & -1 &|0\\ 0 & 4 & 3 & 1 &|4\\ 0 & -6 & 0& -4&|-14 \end{pmatrix} [/mm]  
Zeilentausch
[mm] \begin{pmatrix} 1 & 3 & 1 & 4 &|1 \\ 0 & 4 & 3 & 1 &|4\\ 0 & -5 & 0 & -1 &|0\\ 0 & -6 & 0& -4&|-14 \end{pmatrix} [/mm]
Spaltentausch
[mm] \begin{pmatrix} 1 & 1 & 3 & 4 &|1 \\ 0 & 3 & 4 & 1 &|4\\ 0 & 0 & -5 & -1 &|0\\ 0 & 0 & -6& -4&|-14 \end{pmatrix} [/mm]




IV = (IV: 6) - ( III:5)

(IV:6)       = >   0   0   -1   -2/3  7/3
         +
(III:5)        = >   0   0   -1   -1/5   0
      IV     =    0   0   0   -7/15  7/3


[mm] \begin{pmatrix} 1 & 1 & 3 & 4 &|1 \\ 0 & 3 & 4 & 1 &|4\\ 0 & 0 & -5 & -1 &|0\\ 0 & 0 & 0& -7/15&|7/3 \end{pmatrix} [/mm]


[mm] -7/15x_{4} [/mm] = 7/3
[mm] x_{4} [/mm] = -5


[mm] -5x_{3}-x_{4} [/mm] = 0
[mm] x_{3} [/mm] = 1


[mm] 3x_{2} [/mm] +4 [mm] x_{3} [/mm] + [mm] x_{4} [/mm] = 4
[mm] x_{2} [/mm] = 5/3


[mm] x_{1} [/mm] + [mm] x_{2}+ 3x_{3}- 4x_{4} [/mm] = 1
[mm] x_{1} [/mm] = 49/3


Also das ist mein Rechenweg etwas detalierter..

Bin ich da auf den richtigen Weg ?

Bezug
                        
Bezug
Rang Basis Demens einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 01:33 Mo 19.09.2016
Autor: leduart

Hallo
hast du deine Werte wenigstens mal in die erste Gl. eingesetzt?
und wenn die anderen stimmen dann folgt aus der letzten Gl dein x1 nicht.
Gruß leduart

Bezug
                                
Bezug
Rang Basis Demens einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Mi 21.09.2016
Autor: Jura86

Ich habe das jetzt auf einem anderen Weg gerechnet.
und zwar habe ich die Zeilen und spalten soweit umgeformt bis ich in der Diagnalnur einsen hatte.

die werte konnte ich dann ablesen :

X1 = 49/15
X2 = 1/3
X3 = - 1/5
X4 = 1/5

Aber um auf die Fragestellung zu kommen:
Der Rang der Matrix ist doch 4 wenn ich unten links Zeilenstufenform habe..
was ist wenn ich jetzt diese einserdiagonale habe ?
was ist dann mit dem rang auch 4 ? weil es ja keine Nullzeile möglich ist.
ist das richtig ?
Demension ist hier auch 4  weil 4 linear  unabhängige Spalten in  dem Gleichungssysthem sind.  Damit die Basis auch 4 oder ?

Bezug
                                        
Bezug
Rang Basis Demens einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Mi 21.09.2016
Autor: Steffi21

Hallo, schachuzipus hat doch schon (fast) alles gelöst, da Du keinen Rechenweg angibst, kann ich den Fehler nicht finden, Du bekommst dann

[mm] x_1=-17 [/mm]
[mm] x_2=-1 [/mm]
[mm] x_3=1 [/mm]
[mm] x_4=5 [/mm]

alles Weitere sollte dann klar sein

Steffi

Bezug
        
Bezug
Rang Basis Demens einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:11 Do 15.09.2016
Autor: schachuzipus

Hallo,

> Berechnen Sie die Lösungsmengen zu den folgenden
> Gleichungssystemen A* [mm]\vec{x}= \vec{b}[/mm]
> Bestimmen Sie
> außerdem den Rang der Matrix A, sowie eine Basis und die
> Dimension vonL [mm](A/\vec{0}).[/mm]
> Guten Tag !

>

> Ich habe hier eine Aufgabe gelöst, und würde gerne
> jemanden bitte kurz zu schauen ob ich das richtig gemacht
> habe.

>

> Aufgabenstellung :

>

> A = [mm]\begin{pmatrix} 2 & 1 & 2 & 7\\ 1 & 3 & 1 & 4 \\ 0 & 4 & 3 & 1\\ 2 & 0 & 2 & 4 \end{pmatrix}[/mm]
> , b = [mm]\begin{pmatrix} 2 \\ 1 \\ 4 \\-12\\ \end{pmatrix}[/mm]

>
>

> Meine Umgeformte Matrix sieht so aus
> [mm]\begin{pmatrix} 1 & 1 & 3 & 4 &|1\\ 0 & 3 & 4 & 1 &|4\\ 0 & 0 & -5 &-1&|0\\ 0 & 0 & 0 & - \bruch{7}{15}|&\bruch{7}{3} \end{pmatrix}[/mm]

Du solltest deine Rechnungen angeben, wenn du eine Kontrolle haben möchtest ...

Ich komme nach wenigen Schritten auf folgende Matrix in ZSF:

[mm]\pmat{2&1&2&7&|&2\\0&-5&0&-1&|&0\\0&0&15&1&|&20\\0&0&0&14&|&70}[/mm]

was sehr schnell zu einer "schönen" ganzzahligen Lösung führt ...


>

> Danach habe ich X1, X2, X3, X4, X5 berechnet
> [mm]x_{1}[/mm] = [mm]\bruch{49}{3}[/mm]
> [mm]x_{2}[/mm] = [mm]\bruch{5}{3}[/mm]
> [mm]x_{3}[/mm] = 1
> [mm]x_{4}[/mm] = -5

>
>

> Und als Antwort würde ich sagen
> Dass das LGS genau eine Lösung hat
> Rang Rg (A) = 4
> Rg (A/b) = 4

>
>

> Ist das soweit okay oder ist es völlig falsch ?
> Wenn der Rechenweg falsch ist, was muss ich denn machen ?
> Habe ich die Aufgabe überhaupt komplett gelöst ?

>

> Vielen Dank in Vorraus!!

Das kleine Wörtchen "voraus" ist ganz bescheiden und kommt mit einem "r" aus ...

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]