matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraRang einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Rang einer Matrix
Rang einer Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix: Beweis gesucht
Status: (Frage) beantwortet Status 
Datum: 17:54 So 17.10.2004
Autor: Karl_Pech

Hallo Leute,

Hier ist noch eine Aufgabe mit der ich gegenwärtig zu kämpfen
habe.

Aufgabe:

Zeige: Eine Matrix $A [mm] \in [/mm] (m [mm] \times [/mm] n, [mm] \IR)$ [/mm] mit $m [mm] \ge [/mm] n$ hat den Rang n genau dann, wenn durch Multiplikation mit der Matrix keine zwei verschiedenen Vektoren auf denselben Vektor abgebildet werden.

Eine Matrix kann man ja durch Zeilenumformungen auf Stufenform
bringen. Und der Rang ist dann die Anzahl von Spalten, in denen nur
eine 1 und sonst nur Nullen stehen. Aber irgendwie ist mir nicht klar,
was hier wie multipliziert wird. Könnte vielleicht jemand das Ganze
in einer mathematischen Form aufschreiben?

Vielen Dank!


Viele Grüße
Karl

        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 So 17.10.2004
Autor: Philipp-ER

Hi.
Meine bescheidenen LA-Kenntnisse sagen mir, dass man diese Aufgabe mit dem Rangsatz lösen kann, indem man die Matrix mit einer geeigneten linearen Abbildung identifiziert.
Der Rangsatz lautet:
Es sei [mm] $f:V\to [/mm] V'$ eine K-lineare Abbildung zwischen Vektorräumen.
Dann gilt:
[mm] $\dim_K V=\dim_K(\ker f)+\dim_K(\mbox{im} [/mm] f)$

Du kannst es ja mal damit versuchen.

Bezug
                
Bezug
Rang einer Matrix: kleiner Ansatz
Status: (Frage) beantwortet Status 
Datum: 21:55 So 17.10.2004
Autor: Karl_Pech

Hallo Philipp,

Also als "geeignete lineare Abbildung" habe ich
[m]\begin{matrix} f:& \IK^m \rightarrow \IK^m \\ f:& x \mapsto Ax \end{matrix}[/m]

gewählt und nach dem Rangsatz gilt dann:
$m = dim(ker(f))+m$, oder aber was habe ich dann damit gezeigt?

Was ich noch festgestellt habe: Offenbar besteht der Beweis dazu aus
2 Teilen [mm] ($\Rightarrow$, $\Leftarrow$). [/mm] Und beim ersten Teil muß man
offenbar die Injektivität von f beweisen, richtig? Aber wie hängen Rang
und Injektivität hier zusammen? Oje, ich glaub' ich bin total verwirrt! :(


Danke nochmal!


Viele Grüße
Karl

Bezug
                        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 00:14 Mo 18.10.2004
Autor: Philipp-ER

Hi.
Die Abbildung hätte ich fast genauso gewählt, es muss aber
[mm] $f:K^n\to K^m$ [/mm] heißen, vielleicht meintest du das ja auch (denn deine Matrix ist ja eine (m,n), keine (m,m) Matrix).
Die Werte, die du für die im Rangsatz auftretenden Größen eingesetzt hast, stimmen damit dann noch nicht, denke nochmal drüber nach.
Wie du richtig erkannt hast, besteht der eine Teil der Aufgabe darin, die Injektivität der Abbildung zu zeigen.
Der zentrale Satz hierfür ist:
Eine K-lineare Abbildung [mm] $f:V\to [/mm] V'$ zwischen Vektorräumen ist genau dann injektiv, wenn [mm] $\ker [/mm] f=0$ gilt.
Was folgt damit natürlich für [mm] $\dim_K(\ker [/mm] f)$?
Und schaffst du es, damit die eine Richtung zu zeigen?
Viel Erfolg
Philipp

Bezug
                                
Bezug
Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:45 Mo 18.10.2004
Autor: Karl_Pech

Hallo Philipp,

Danke für die bisherige Hilfe:

Ich glaube die Richtung [mm] "$\Leftarrow$" [/mm] geht so:
Sei f wie du gesagt hast, dann gilt nach dem Rangsatz:
$n = dim(ker(f)) + rang(f) = dim(ker(f)) + m$.
Na ja, und da du ja sagst, daß dim(ker(f)) für Injektivität 0 ist,
gilt n = m, damit haben wir jetzt bewiesen, daß wir es mit einer
quadratischen Matrix zu tun haben. Aber haben wir dann wirklich
gezeigt, daß diese Matrix den Rang n hat?


Grüße
Karl

Bezug
                                        
Bezug
Rang einer Matrix: Korrektur
Status: (Antwort) fertig Status 
Datum: 09:42 Mo 18.10.2004
Autor: Gnometech

Fast, aber nicht ganz!

> Ich glaube die Richtung "[mm]\Leftarrow[/mm]" geht so:
>  Sei f wie du gesagt hast, dann gilt nach dem Rangsatz:
>  [mm]n = dim(ker(f)) + rang(f) = dim(ker(f)) + m[/mm].

Du weißt doch nichts über den Rang... laß ihn doch einfach so stehen! Schließlich gilt $rang(f) = rang(A)$ für Deine so gewählte Abbildung. Und wenn Du dann die letzte Gleichheit wegläßt, folgt $n = rang(A)$ und das war in dieser Richtung zu zeigen.

Die andere geht im Prinzip genauso... wenn Du schon weißt, dass $rang(f) = n$ gilt, was folgt dann für $ker(f)$? Und wie hängt nochmal der Kern mit der Injektivität zusammen...?

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]