matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRang einer Matrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Rang einer Matrix
Rang einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Mi 25.03.2009
Autor: MatheNullplan00

Aufgabe
Rang der Matrix bestimmen.

[mm] \pmat{ 1 & 2 & 3\\ 0 & 5 & 4 \\ 0 & 10 & 2} [/mm] ~ [mm] \pmat{ 1 & 2 & 3\\ 0 & 5 & 4 \\ 0 & 0 & -6} [/mm]
Ich weiß was der Rang einer Matrix ist...
Aber ich weiß nicht wie man von der ersten Matrix zu zweiten kommt...klar mit Gauß, aber ich komm nicht drauf.
Kann mir jemand auf die Sprünge helfen?

        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Mi 25.03.2009
Autor: schachuzipus

Hallo MatheNullplan00,

> Rang der Matrix bestimmen.
>  [mm]\pmat{ 1 & 2 & 3\\ 0 & 5 & 4 \\ 0 & 10 & 2}[/mm] ~ [mm]\pmat{ 1 & 2 & 3\\ 0 & 5 & 4 \\ 0 & 0 & -6}[/mm]
>  
> Ich weiß was der Rang einer Matrix ist...
>  Aber ich weiß nicht wie man von der ersten Matrix zu
> zweiten kommt...klar mit Gauß, aber ich komm nicht drauf.
> Kann mir jemand auf die Sprünge helfen?

Um den Rang zu bestimmen, bringt man die Matrix ja für gewöhnlich in Zeilenstufenform, so auch hier.

Es wurde das $(-2)$-fache der 2.Zeile zur 3.Zeile addiert, um den Eintrag [mm] $a_{32}$ [/mm] zu eliminieren, also zu 0 zu machen ...

LG

schachuzipus


Bezug
                
Bezug
Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Mi 25.03.2009
Autor: MatheNullplan00

Achso, klar, jetzt seh ich es auch. Danke.
Und Zeilenstufenform, ist ja die Form:unter der ersten NichtNullKomponente nur Nullen...Oder?
Kann mir vielleicht einer erklären(ohne Symbole) was eine äquivalente Matrix ist.

Bezug
                        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Mi 25.03.2009
Autor: fred97

Zwei m [mm] \times [/mm] n-Matrizen A und B sind äquivalent  : [mm] \gdw [/mm]

es gibt eine invertierbare m [mm] \times [/mm] m-Matrix S und eine invertierbare n [mm] \times [/mm] n-Matrix T mit  B = SAT.



FRED


Bezug
                                
Bezug
Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Mi 25.03.2009
Autor: MatheNullplan00

Ah, Okay.
Die Matrizen sind dann auch äquivalent wenn sie den gleichen Rang haben?


Bezug
                                        
Bezug
Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Mi 25.03.2009
Autor: MatheNullplan00

Falls die Matrix schon in der Trapez-Zeilenstufen Form aufgebaut ist. Kann mann sofort den Rang ablesen oder?

Bezug
                                                
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Mi 25.03.2009
Autor: fred97

Ja

FRED

Bezug
                                        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Mi 25.03.2009
Autor: fred97

Schau mal hier:


http://www.mathepedia.de/Aequivalente_Matrizen.aspx


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]