matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRang von Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Rang von Matrizen
Rang von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang von Matrizen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:32 Sa 19.01.2008
Autor: hase-hh

Aufgabe
Sei K ein Körper und A [mm] \in [/mm] M (m x n, K) sowie N [mm] \in [/mm] M (n x r, K).

1. Beweisen Sie die folgenden beiden Ungleichungen.

a) rang (A*B) [mm] \le [/mm] min(rang(A), rang(B))

b) rang(A) + rang(B) - n [mm] \le [/mm] rang (A*B)

2. Zeigen Sie, dass diese abschätzungen scharf sind, d.h. finden Sie Beispiele von Matrizen für die

c) rang (A*B) = min(rang(A), rang(B))

d) rang(A) + rang(B) - n = rang(A*B)

gilt.  

Guten Tag,

auch hier weiß ich nicht genau, wie ich vorgehen soll...

Ich weiß:

Der Rang einer Matrix ist gleich die Anzahl der unabhängigen Zeilenvektoren.

Ferner, vorausgesetzt wird A (m,n)-Matrix; B(n,n)-Matrix,

rang(A) = [mm] rang(A^T) [/mm]

rang(A) [mm] \le [/mm] min{m,n}

rang(B) = n   falls det(B) [mm] \ne [/mm] 0

rang(A*B) = rang(A)   falls det(B) [mm] \ne [/mm] 0


Mir fehlt der Ansatz!

Danke für eure Hilfe!

Gruß
Wolfgang





        
Bezug
Rang von Matrizen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Mi 23.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]