matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRangberechnung mit Parametern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Rangberechnung mit Parametern
Rangberechnung mit Parametern < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rangberechnung mit Parametern: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:35 Mi 24.01.2007
Autor: DieSuse

Aufgabe
Führen Sie eine Ranguntersuchung durch und bestimmen Sie diejenigen Parameterwerte
a, b E R, für die das folgende lineare Gleichungssystem
a) eindeutig lösbar b) mehrdeutig lösbar und c) unlösbar ist !
d) Geben Sie im Fall b) die Lösung vektoriell an !


x   + y     + z     =1
2x + y     + z     =-1
4x + 12y + a*z = b


habe versucht den Rang zu bestimmen...bleibe aber hängen bei...

[mm] \pmat{ 1 & 1 & 1 & 1\\ 0 & 1 & -1 & -3\\ 0 & 8 & -4+a & -4+b } [/mm]

aber wie nun weiter? oder bin ich schon auf dem falschen weg?

        
Bezug
Rangberechnung mit Parametern: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Mi 24.01.2007
Autor: schachuzipus


> Führen Sie eine Ranguntersuchung durch und bestimmen Sie
> diejenigen Parameterwerte
>  a, b E R, für die das folgende lineare Gleichungssystem
>  a) eindeutig lösbar b) mehrdeutig lösbar und c) unlösbar
> ist !
>  d) Geben Sie im Fall b) die Lösung vektoriell an !
>  
>
> x   + y     + z     =1
>  2x + y     + z     =-1
>  4x + 12y + a*z = b
>  
> habe versucht den Rang zu bestimmen...bleibe aber hängen
> bei...
>  
> [mm]\pmat{ 1 & 1 & 1 & 1\\ 0 & 1 & -1 & -3\\ 0 & 8 & -4+a & -4+b }[/mm]
>  
> aber wie nun weiter? oder bin ich schon auf dem falschen
> weg?


Hallo

hier hat sich ein kleiner VZ-Fehler eingeschlichen

[mm] \pmat{ 1 & 1 & 1 & |&1\\ 0 & -1 & -1 &|& -3\\ 0 & 8 & -4+a & |&-4+b } [/mm]

Nun kannst du weiter umformen, zB. das 8-fache der 2ten Zeile zur 3ten Zeile addieren usw.

Erlaubt sind hierbei drei Arten von elementaren Zeilenumformungen:

1) Vertauschen von zwei Zeilen

2) Addieren eines Vielfachen (auch 0-fachen!) einer Zeile zu einer anderen

3) Multiplikation einer Zeile mit einer Zahl (einem Skalar) [mm] \ne [/mm] 0

Wenn du die Matrix noch weiter vereinfacht hast (durch Eliminieren der Einträge [mm] a_{31} [/mm] und [mm] a_{32}), [/mm] musst du Fallunterscheidungen für a,b machen.
Davon hängen dann Rang und Lösbarkeit des gesuchten LGS ab.


Gruß


schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]