Ranglisten < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | An 6 Personen werden die Merkmale X=Gewicht und Y=Größe erhoben.
[mm] \vmat{75 & 80 & 60 & 65 & 70\\ 174 & 180 & 160 & 170 & 173} [/mm] = [mm] \bruch{X_{i}}{Y_{i}}
[/mm]
Berechne [mm] r_{s}, d=\summe_{}^{} d_{i} [/mm] und teste auf Korreliarkeit bei [mm] \alpha [/mm] = 0.05 |
Hallo!
Zuerst möchte ich [mm] r_{s} [/mm] berechnen. Also hab ich mir rausgesucht was ich dafür alles brauche:
[mm] r_{s} [/mm] = [mm] \bruch{\summe_{i=1}^{n}(r_{i}-r')(s_{i}-s')}{\wurzel{\summe_{i=1}^{n}(r_{i}-r')^{2}}\wurzel{\summe_{i=1}^{n}(s_{i}-s')^{2}}}
[/mm]
Also brauche ich [mm] r'=s'=\bruch{n+1}{2}.
[/mm]
Ich brauche [mm] \summe_{i=1}^{n}(r_{i}-r')^{2} [/mm] = [mm] \summe_{i=1}^{n}(s_{i}-s')^{2} [/mm] = [mm] \bruch{(n-1)n(n+1)}{12}.
[/mm]
Und ich weiß, dass [mm] r_{i} [/mm] = Rang von [mm] X_{i} [/mm] ist und [mm] s_{i} [/mm] = Rang von [mm] Y_{i}.
[/mm]
Jetzt mal eine grundlegende Frage: Was muss ich denn für n in den Formeln einsetzen? Wir hatten ein Beispiel in der Vorlesung. Aber leider wird mir das daraus nicht ersichtlich.
Hier brauch ich bestimmt die Daten der 6 Pesonen.
Wenn ihr mir das sagen könntet. Oder mir einen Tipp geben könntet, dann könnte ich den Rest erst einmal wieder alleine probieren.
Danke!
lg
Ich habe diese Aufgabe in keinem anderen Forum gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:54 Di 13.02.2007 | Autor: | Kyle |
Hallo!
Wenn Du die Korrelation ausrechnen willst, dann steht im Zähler die Covarianz und im Nenner jeweils die einzelnen Varianzen (Definitionen kannst Du auch bei Wikipeida oder in einem Stochastik Buch finden). Dann sind die hinteren Werte r' und s' jeweils die Mittelwerte (arithmetisches Mittel) bezüglich der einzelnen Merkmale, da die Varianz die quadratische Abweichung vom Mittelwert ist (also immer Meßwert - Mittelwert zum Quadrat), dasselbe gilt für die Covarianz, nur, daß ich da nicht quadriere, sondern immer das Produkt bilde aus Meßwert-Mittelwert der beiden Meßreihen. Insofern ist die Varianz ein Spezialfall der Covarianz, quasi die Covarianz mit sich selbst). n ist immer die Anzahl der Meßwerte, also in Deinem Fall 6.
Liebe Grüße,
Kyle
|
|
|
|