matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Rationale Potenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - Rationale Potenzen
Rationale Potenzen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rationale Potenzen: Beweis von Rechenregeln
Status: (Frage) beantwortet Status 
Datum: 15:17 Fr 20.10.2006
Autor: neuling_hier

Aufgabe
Es seien [mm] a,b\in\IR_+ [/mm] und [mm] r,s\in\IQ. [/mm]
Behauptung: [mm] a^r a^s [/mm] = [mm] a^{r+s}. [/mm]

Hallo liebes Forum,

Ich sitze vor dem angegebenen Analysis I-Skriptteil, der "zur eigenen Übung" überlassen wurde und komme nicht weiter. Meine bisherige, sehr bescheidene Beweisidee (eigentlich ist da noch gar nichts passiert, aber ich "haenge" total fest) sieht wie folgt aus:

Ich nehme mir zunaechst m,n und m',n' aus [mm] \IZ [/mm] her, und es seien

  r := [mm] \bruch{m}{n} [/mm] und s := [mm] \bruch{m'}{n'}. [/mm]

Dann gilt:

     [mm] a^r \cdot a^s [/mm]

  = [mm] a^\bruch{m}{n} \cdot a^\bruch{m'}{n'} [/mm]

  = [mm] sup\{ x\in\IR | x^n \leq a^m \} \cdot sup\{ x\in\IR | x^{n'} \leq a^m' \} [/mm]

  = [mm] [\ldots [/mm] ? [mm] \ldots] [/mm]

  = [mm] sup\{ x\in\IR | x^{nn'} \leq a^{mn'+m'n} \} [/mm]

  = [mm] a^\bruch{mn'+m'n}{nn'} [/mm]

  = [mm] a^{r+s} [/mm]

Naja, und der ausgelassene Teil fehlt mir. Wie bekommt man diesen Uebergang hin? Empfiehlt sich die Benutzung der [mm] \varepsilon-Bedingung [/mm] fuer das Supremum, oder sehe ich nur den Wald vor lauter Baeumen nicht?!

Fuer eine hilfreiche Antwort bzw. einen Loesungsansatz waere ich Euch super dankbar, da ich schon eine "ganze Weile" mit dieser Aufgabe verbracht habe :(

        
Bezug
Rationale Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Fr 20.10.2006
Autor: M.Rex

Hallo

Ich würde das Ganze über den direkten Weg zeigen.#

Also: Wir wissen

[mm] a^{r}*a^{s}=\underbrace{a*\ldots*a}_{r-mal}*\underbrace{a*\ldots *a}_{s-mal}=\underbrace{a*\ldots*a}_{(r+s)-mal}=a^{r+s} [/mm]

Marius

Bezug
                
Bezug
Rationale Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:16 Fr 20.10.2006
Autor: neuling_hier

Hallo Marius,

Erstmal Danke fuer Deine Antwort.

Wenn r und s natuerliche Zahlen waeren, wuerde ich das auch so machen (z.B. mit Induktion). Aber r und s sind rational, also zum Beispiel gilt auch:

  [mm] a^{\bruch{2}{3}} \cdot a^{\bruch{4}{3}} [/mm] = [mm] a^2 [/mm]

Wie zeige ich das allgemein fuer r, s [mm] \in\IQ [/mm] , dass [mm] a^r \cdot a^s [/mm] = [mm] a^{r+s} [/mm] ?

Bezug
                        
Bezug
Rationale Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Fr 20.10.2006
Autor: M.Rex

Hallo

Sorry, das hatte ich nicht bedacht.

Dann musst du halt über den Umweg der Wurzel gehen.

Du weisst, dass [mm] a^{\bruch{m}{n}}=\wurzel[n]{a^{m}} [/mm]

Also

[mm] r=\bruch{m}{h}, s=\bruch{n}{h}, [/mm] ich nehme mal an, dass die Brüche schon auf den Hauptnenner h erweitert wurden, das macht das Rechnen leichter

Also

[mm] a^{r}*a^{s}=a^{\bruch{m}{h}}*a^{\bruch{n}{h}}=\wurzel[h]{a^{m}*a^{n}} [/mm]
Da [mm] m,n\in\IN =\wurzel[h]{a^{m+n}}=a^{\bruch{m+n}{h}}=a^{\bruch{m}{h}+\bruch{n}{h}}=a^{r+s} [/mm]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]