matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesReal- und Imaginärteil
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Real- und Imaginärteil
Real- und Imaginärteil < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Real- und Imaginärteil: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:19 Fr 03.08.2007
Autor: diecky

Aufgabe
Sei z = [mm] \bruch{12 + 8i}{(1 - \wurzel{3} i) (3 + 2i)} [/mm]

Geben Sie Real und Imaginärteil an und die Polardarstellung.

Grundsätzlich ist mir die Vorhergehensweise klar, aber leider habe ich sowas noch nie mit solch einer "großen" Aufgabe gelöst und habe deshalb auch Probleme:

[mm] \bruch{12 + 8i}{(1 - \wurzel{3} i) (3 + 2i)} [/mm] *  [mm] \bruch{(1 + \wurzel{3}i) (3 - 2i)}{(1 + \wurzel{3} i) (3 - 2i)} [/mm] = [mm] \bruch{(12 + 12 \wurzel{3}i + 8i + 8 \wurzel{3}i²) (36 - 24i + 24i - 16i²)}{(1-3i²) (9-4i²)} [/mm] = [mm] \bruch{(12-8 \wurzel{3} + 12 \wurzel{3}i + 8i)*52}{52} [/mm] = 12 - 8 [mm] \wurzel{3} [/mm] + 12 [mm] \wurzel{3}i [/mm] + 8i

Aber nun krieg ich die Wurzeln nicht weg?!?
Wo liegt mein Fehler???

        
Bezug
Real- und Imaginärteil: zuviel ausmultipliziert
Status: (Antwort) fertig Status 
Datum: 19:26 Fr 03.08.2007
Autor: Loddar

Hallo diecky!


Die Wurzeln müssen nicht zwangsläufig verschwinden bei der Aufgabe, also nicht daran stören.

Allerdings hast Du im Zähler etwas mit dem Ausmultiplizieren nach dem Erweitern übertrieben.

Da brauchst Du den Term $(12+8i)_$ nur mit einem der beiden anderen Terme multiplizieren, und nicht mit beiden:

$... \  = \ [mm] \bruch{\left(12 + 12 \wurzel{3}i + 8i + 8 \wurzel{3}i^2\right)* (3-2i)}{(1-3i²)* (9-4i²)} [/mm] \ = \ ...$


Gruß
Loddar


Bezug
                
Bezug
Real- und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Sa 04.08.2007
Autor: Somebody


> Hallo diecky!
>  
>
> Die Wurzeln müssen nicht zwangsläufig verschwinden bei der
> Aufgabe, also nicht daran stören.
>  
> Allerdings hast Du im Zähler etwas mit dem
> Ausmultiplizieren nach dem Erweitern übertrieben.
>  
> Da brauchst Du den Term [mm](12+8i)_[/mm] nur mit einem der beiden
> anderen Terme multiplizieren, und nicht mit beiden:
>  
> [mm]... \ = \ \bruch{\left(12 + 12 \wurzel{3}i + 8i + 8 \wurzel{3}i^2\right)* (3-2i)}{(1-3i²)* (9-4i²)} \ = \ ...[/mm]
>  

Aber wegen [mm] $12+8\mathrm{i}=4(3+2\mathrm{i})$ [/mm] wäre es einfacher, [mm] $12+8\mathrm{i}$ [/mm] mit [mm] $3-2\mathrm{i}$ [/mm] zu multiplizieren: [mm] $(12+8\mathrm{i})(3-2\mathrm{i})=4\cdot [/mm] 13=52$.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]