matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLaplace-TransformationRechenschritt/Rücktransform...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Laplace-Transformation" - Rechenschritt/Rücktransform...
Rechenschritt/Rücktransform... < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechenschritt/Rücktransform...: Erklärung
Status: (Frage) beantwortet Status 
Datum: 18:06 Mi 14.03.2012
Autor: Mathe_001

Aufgabe
Rücktransformation:


[mm] L^{-1}(\bruch{e^{-s}}{s^{3}+4s^{2}+3s})=-h(t-1)(\bruch{1}{3}-0.5e^{-(t-1)}+ \bruch{1}{6}e^{-3(t-1)}) [/mm]


hallo zusammen,

ich kann den oben angebenen rechenschritt nicht nachvollziehen.

heaviside-funktion:
[mm] h(t)=\begin{cases} 1, & t\ge0 \\ 0, & t<0 \end{cases} [/mm]

[mm] L^{-1}(\bruch{1}{s^{3}+4s^{2}+3s}))=\bruch{1}{3}-0.5e^{-t}+ \bruch{1}{6}e^{-3t} [/mm]

nun wende ich die formel:
[mm] L(f(t-a))=e^{-as}F(s), [/mm] a>0 an. wobei hier a=1 ist

mit L(f(t))=F(s) folgt:

[mm] L(f(t-a))=e^{-as}*L(f(t)) [/mm] = [mm] \bruch{e^{-s}}{s^{3}+4s^{2}+3s}= e^{-s} \bruch{1}{s^{3}+4s^{2}+3s} [/mm]

==> L(f(t))= [mm] \bruch{1}{s^{3}+4s^{2}+3s} [/mm]  | [mm] L^{-1} [/mm]
      f(t) = [mm] \bruch{1}{3}-0.5e^{-t}+ \bruch{1}{6}e^{-3t} [/mm]
      [mm] f(t-1)=(\bruch{1}{3}-0.5e^{-(t-1)}+ \bruch{1}{6}e^{-3(t-1)}) [/mm]

ich verstehe jetzt nicht, wo mein fehler sein soll :(


gruß

Mathe_001



        
Bezug
Rechenschritt/Rücktransform...: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mi 14.03.2012
Autor: MathePower

Hallo Mathe_001,

> Rücktransformation:
>  
>
> [mm]L^{-1}(\bruch{e^{-s}}{s^{3}+4s^{2}+3s})=-h(t-1)(\bruch{1}{3}-0.5e^{-(t-1)}+ \bruch{1}{6}e^{-3(t-1)})[/mm]

>

> hallo zusammen,
>  
> ich kann den oben angebenen rechenschritt nicht
> nachvollziehen.
>  
> heaviside-funktion:
>  [mm]h(t)=\begin{cases} 1, & t\ge0 \\ 0, & t<0 \end{cases}[/mm]
>
> [mm]L^{-1}(\bruch{1}{s^{3}+4s^{2}+3s}))=\bruch{1}{3}-0.5e^{-t}+ \bruch{1}{6}e^{-3t}[/mm]
>  
> nun wende ich die formel:
>  [mm]L(f(t-a))=e^{-as}F(s),[/mm] a>0 an. wobei hier a=1 ist
>  
> mit L(f(t))=F(s) folgt:
>  
> [mm]L(f(t-a))=e^{-as}*L(f(t))[/mm] =
> [mm]\bruch{e^{-s}}{s^{3}+4s^{2}+3s}= e^{-s} \bruch{1}{s^{3}+4s^{2}+3s}[/mm]
>  
> ==> L(f(t))= [mm]\bruch{1}{s^{3}+4s^{2}+3s}[/mm]  | [mm]L^{-1}[/mm]
>        f(t) = [mm]\bruch{1}{3}-0.5e^{-t}+ \bruch{1}{6}e^{-3t}[/mm]
>  
>      [mm]f(t-1)=(\bruch{1}{3}-0.5e^{-(t-1)}+ \bruch{1}{6}e^{-3(t-1)})[/mm]
>  
> ich verstehe jetzt nicht, wo mein fehler sein soll :(
>  


Du hast nur die Rücktransformation für [mm]t \ge1[/mm] berechnet.


>
> gruß
>  
> Mathe_001
>  


Gruss
MathePower  

Bezug
                
Bezug
Rechenschritt/Rücktransform...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Mi 14.03.2012
Autor: Mathe_001

hallo,

wie muss ich dann vorgehen, damit ich es für t<1 berechnen kann?
was erhalte ich wenn ich da werte für t, die kleiner als 1 sind, einsetze?

gruß

Mathe_001

Bezug
                        
Bezug
Rechenschritt/Rücktransform...: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Mi 14.03.2012
Autor: MathePower

Hallo Mathe_001,

> hallo,
>  
> wie muss ich dann vorgehen, damit ich es für t<1 berechnen
> kann?


Da brauchst Du nichts rechnen, das leistet die Heaviside-Funktion h(t-1).


>  was erhalte ich wenn ich da werte für t, die kleiner als
> 1 sind, einsetze?
>  
> gruß
>  
> Mathe_001


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]