matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikRechnen mit Mantissenlänge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Numerik" - Rechnen mit Mantissenlänge
Rechnen mit Mantissenlänge < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechnen mit Mantissenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 Mi 28.06.2006
Autor: Haley

Aufgabe
Man berechne den Term

                  [mm](1-x+x^{2})*(1+x)[/mm]

exakt und für die angegebenen Mantissenlängen m, ferner berechne man die Konditionszahl K (jeweils für die beiden angegebenen x-Werte):

  x | [mm] (1-x+x^2)*(1+x) [/mm]     m=1       m=2        exakt      |K|
----+----------------+----------+----------+-----------+---------
0,1 |                |          |          |           |  
0,5 |                |          |          |           |

Hinweise:
Rechnen mit Mantissenlänge bedeutet: Runden nach jeder arithmetischen Operation (ab Dezimale 5 nach oben runden).
Alle Terme bei Rechnungen stets von links her auswerten.
Bei der Berechnung der Konditionszahl (auf zwei Stellen genau) ist die Identität
               [mm](1-x+x^{2})*(1+x) = 1 + x^{3}[/mm]
nützlich.

Hallo,

die exakten Lösungen sind klar.

[mm] (1-0,1+0,1^2)*(1+0,1) [/mm] = 1,001
[mm] (1-0,1+0,1^2)*(1+0,1) [/mm] = 1,125



Bei der Rechnung mit Mantissenlänge harpert's schon. Aus meinem Vorlesungsskript werde ich leider überhaupt nicht schlau.

Ich versuche das mal am Beispiel m=1, x=0,1 fest zu machen:

Wie gehabt setze ich zunächst mal 0,1 ein:
[mm](1-0,1+0,1^{2})*(1+0,1)[/mm]

Jetzt würde ich wohl erst mal [mm]0,1^{2}[/mm] ausrechnen (exakte Lösung: 0,01). Runde ich das dann direkt auf 0 ab, oder wie ist der Lösungshinweis zu verstehen? Und wie ist "Alle Terme bei Rechnungen stets von links her auswerten" zu deuten? Vermutlich ist das ziemlich trivial, aber ich stehe echt auf dem Schlauch. :(




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Rechnen mit Mantissenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Do 06.07.2006
Autor: mathemaduenn

Hallo Haley,
[willkommenmr]
Ein wenig spät aber was soll's :-)

> Hallo,
>  
> die exakten Lösungen sind klar.
>  
> [mm](1-0,1+0,1^2)*(1+0,1)[/mm] = 1,001
>  [mm](1-0,1+0,1^2)*(1+0,1)[/mm] = 1,125
>  
>
> Bei der Rechnung mit Mantissenlänge harpert's schon. Aus
> meinem Vorlesungsskript werde ich leider überhaupt nicht
> schlau.
>  
> Ich versuche das mal am Beispiel m=1, x=0,1 fest zu
> machen:
>  
> Wie gehabt setze ich zunächst mal 0,1 ein:
>  [mm](1-0,1+0,1^{2})*(1+0,1)[/mm]
>  
> Jetzt würde ich wohl erst mal [mm]0,1^{2}[/mm] ausrechnen (exakte
> Lösung: 0,01). Runde ich das dann direkt auf 0 ab, oder wie
> ist der Lösungshinweis zu verstehen?

Nein, die führenden Nullen zählen nicht zur Mantissenlänge dazu. Also wird 0,01 auf 0,01 gerundet.

> Und wie ist "Alle
> Terme bei Rechnungen stets von links her auswerten" zu
> deuten? Vermutlich ist das ziemlich trivial, aber ich stehe
> echt auf dem Schlauch. :(

Um
1+2+3+4 zu rechnen sollst Du also erst
1+2=3 rechnen
dann
3+3=6
dann
6+4=10
viele grüße
mathemaduenn

Bezug
                
Bezug
Rechnen mit Mantissenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:29 Fr 08.12.2006
Autor: JoeMulti

Hallo an alle- Ich hoffe mein erstes Posting geht nicht schief ;)
Ich möchte hiermit nochmals oben angeführte Aufgabenstellung aufgreiffen und weiterführen.

Gehe ich recht in der Annahme, dass der oben angegebene Term wie folgt aufgelöst werden kann:

Für die Mantissenlänge m=1 und x=0,1

[mm] (1-x+x^2)*(1+x)=f(x) [/mm]

f(x)=
[mm] (1-0,1+0,01)*(1+0,1)\Rightarrow [/mm]
[mm] (0,9+0,01)*(1,1)\Rightarrow [/mm]
[mm] 0,9*1\Rightarrow [/mm]

f(x)=0,9

Für die Mantissenlänge m=2 und x=0,1

f(x)=
[mm] (1-0,1+0,01)*(1+0,1)\Rightarrow [/mm]
[mm] (0,9+0,01)*(1,1)\Rightarrow [/mm]
[mm] 0,9*1,1\Rightarrow [/mm]

f(x)=0,99

Ist das soweit richtig? Oder habe ich da bereits einen grundlegenden Fehler gemacht?
Ich lasse mich auch gerne belehren wie ich den Teil vor dem Gleichheitszeichen richtig hätte benennen können ;)

Gruß

Joe Multi


Bezug
                        
Bezug
Rechnen mit Mantissenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Mo 11.12.2006
Autor: mathemaduenn

Hallo JoeMulti,
Wiederum etwas spät ;-)

> Gehe ich recht in der Annahme, dass der oben angegebene
> Term wie folgt aufgelöst werden kann:
>  
> Für die Mantissenlänge m=1 und x=0,1
>  
> [mm](1-x+x^2)*(1+x)=f(x)[/mm]
>  
> f(x)=
>  [mm](1-0,1+0,01)*(1+0,1)\Rightarrow[/mm]
>  [mm](0,9+0,01)*(\red{1,1})\Rightarrow[/mm]
>  [mm]0,9*1\Rightarrow[/mm]
>  
> f(x)=0,9
>  
> Für die Mantissenlänge m=2 und x=0,1
>  
> f(x)=
>  [mm](1-0,1+0,01)*(1+0,1)\Rightarrow[/mm]
>  [mm](0,9+0,01)*(1,1)\Rightarrow[/mm]
>  [mm]\red{0,9}*1,1\Rightarrow[/mm]
>  
> f(x)=0,99

Die rot markierten Sachen solltest Du nochmals überprüfen. Wie bereits gesagt Mantissenlänge= Anzahl der Ziffern ohne führende Nullen.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]