matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisRechteck maximal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Rechteck maximal
Rechteck maximal < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechteck maximal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Mo 12.12.2005
Autor: philipp-100

Hallo,

[mm] f(x)=x+(2/(x^2)) [/mm]  x>0
AUfg:koordinatenachsen und ihre parallelen durch den punkt p (x/f(x))
schließen ein Rechteck ein.
wann ist der Flächeninhalt dieses Rechteckes minimal.


Rechteck muss ja f(x)*x sein ???

das habe ich auch gemacht [mm] =x^2+2/x [/mm] habe ich für das viereck

dann hab ich f'(x) gleich null gesetzt und nur x=1 rausbekommen.
Das kann aber nicht richtig sein.
Bitte um Hilfe

Philipp


        
Bezug
Rechteck maximal: Problem?
Status: (Antwort) fertig Status 
Datum: 20:52 Mo 12.12.2005
Autor: MathePower

Hallo philipp-100,

> Hallo,
>  
> [mm]f(x)=x+(2/(x^2))[/mm]  x>0
>  AUfg:koordinatenachsen und ihre parallelen durch den punkt
> p (x/f(x))
>  schließen ein Rechteck ein.
>  wann ist der Flächeninhalt dieses Rechteckes minimal.
>  
>
> Rechteck muss ja f(x)*x sein ???
>  
> das habe ich auch gemacht [mm]=x^2+2/x[/mm] habe ich für das
> viereck
>  
> dann hab ich f'(x) gleich null gesetzt und nur x=1
> rausbekommen.

das ist soweit ok.  [ok]

>  Das kann aber nicht richtig sein.

Die Gleichung f'(x) = 0 entspricht einer Gleichung 3. Grades. Diese hat in diesem Fall nur eine reelle Lösung und zwei komplexe Lösungen.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]