Rechteckberechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Hallo!
Stehe vor einem kleinen Problem und komme einfach auf kein einziges Ergebnis.
Die Aufgabe lautet:
Der Umfang eines Rechteckes beträgt 1034m
Die Diagonale: 407m
So nun habe ich die Formeln: d = [mm] \wurzel{a²+b²}
[/mm]
und U =2a + 2b
1034m = 2a + 2b
407m = [mm] \wurzel{a²+b²}
[/mm]
Ich habe schon versucht alles irgendwie so umzustellen das es passt, aber irgendwie klappt das nicht?!... Bitte um dringende Hilfe... Wäre super wenn einer das kurz schritt für schritt erläutern könnte. Sieht irgendwie einfach aus aber ich komme nicht hinter das Ergebnis :(
|
|
|
|
Guten Morgen,
du möchtest wahrscheinlich a und b ausrechnen oder?
Wenn ja dann weißt du ja, dass du zwei Unbekannten hast also a und b. Um auf das Ergebnis zu kommen benötigst du also auch zwei Gleichungen die du ja auch hast.
Um die Aufgabe zu lösen musst du jetzt z.B. die Gleichung für den Umfang nach a auflösen und dann für a in der Formel für die Diagonale die aufgelöste Gleichung einsetzen.
Damit hast du dann eine Gleichung mit nur einer unbekannten und kannst diese lösen.
Kommst du nun alleine zurecht?
Viele Grüsse
MatheSckell
|
|
|
|
|
Hi!
Genau sowie du es beschreibst habe ich es auch schon zich male versucht... habe jetzt schon einige schmierblätter vor mir nur komme ich auf kein positives ergebnis... vll mache ich da irgendwie rechnerisch was falsch!? Wäre echt nett wenn du mir die einzelnen schritte mal kurz erläutern könntest... Danke!
|
|
|
|
|
Also dann wollen wir mal:
[mm] d=\wurzel{a^{2}+b^{2}}
[/mm]
[mm] u=2a+2b\Rightarrow a=\bruch{u-2b}{2}
[/mm]
[mm] d=\wurzel{(\bruch{u-2b}{2})^{2}+b^{2}}\Rightarrow d=\wurzel{\bruch{u^{2}-4ub+4b^{2}}{4}+b^{2}}\Rightarrow d^{2}=\bruch{u^{2}-4ub+4b^{2}}{4}+b^{2}\Rightarrow 8b^{2}-4ub+u^{2}-4d^{2}=0
[/mm]
Jetz einsetzen:
[mm] 8b^{2}-4136b+406560=0
[/mm]
Das musst jetzt noch in die Mitternachtsformel und dann kommt für [mm] b_{1}=385m [/mm] und für [mm] b_{2}=132m [/mm] heraus.
Und jetzt musst du das wieder in die Umfangs- oder Diagonalformel einsetzen.
Viele Grüsse
MatheSckell
|
|
|
|
|
gemeint ist zum schluss die pq formel oder?
Vielen Dank!!!! Sehr nett!!! ich hatte schon gleich zu anfang einen umstellungsfehler gemacht :( aba naja... und du hast einen kleinen tippfehler bei der einen formel... da müsste 2a+2b stehen nicht 2ab+2b :) nur mal so am rande :D DAAAANKE!!!!
|
|
|
|
|
Vielen Dank für den Hinweis.
Noch ein Tipp:
Du kannst für das Lösen natürlich die PQ-Formel benutzen. Diese hat allerdings einen kleinen Nachteil. Du musst ja die Gleichung zu beginn durch 8 Teilen. Das kann bei anderen Aufgaben sehr schnell lästig werden. Deswegen empfehle ich dir die abc-Formel bzw. Mitternachtsformel:
[mm] x_{1/2}=\bruch{-b\pm\wurzel{b^{2}-4ac}}{2a}
[/mm]
Als Beispiel:
[mm] ax^{2}+bx+c=0
[/mm]
[mm] 4x^{2}+3x-2=0
[/mm]
a=4; b=3; c=2
Viele Grüsse
MatheSckell
|
|
|
|