matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeoGebraRegression: logist. Wachstum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "GeoGebra" - Regression: logist. Wachstum
Regression: logist. Wachstum < GeoGebra < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "GeoGebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regression: logist. Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Di 21.12.2010
Autor: Martinius

Hallo,

ich habe eine Frage zur Funktionsweise von Geogebra betr. das logistische Wachstum.

Ausgehend von:

[mm] $y(t)=\frac{G}{1+k*exp(-rGt)}$ [/mm]


mit G = obere Schranke des Wachstums, A = y(0) Anfangswert der Population bei t = 0 und [mm] $k=\frac{G-A}{A}$ [/mm]

kommt man auf die linearisierte Form:


$z(t) = [mm] ln\left(\frac{1}{y}-\frac{1}{G} \right)=-r*G*t+ ln\left(\frac{1}{A}-\frac{1}{G} \right)$ [/mm]

Für die Regressionsgerade werden die t-Werte gegen die logarithmierten modifizierten y-Werte:

$z(t) = [mm] ln\left(\frac{1}{y}-\frac{1}{G} \right)$ [/mm]

aufgetragen. Dazu benötigt man aber schon den Zahlenwert für G - für die obere Wachstumsschranke! Auch in meinem (käuflich erworbenen) Rechen- & Statistikprogramm ist diese Angabe erforderlich.


In Geogebra hingegen ist die Angabe einer oberen Wachstumsgrenze nicht erforderlich - das Programm ermittelt aus t-Werten und y-Werten von sich aus eine obere Grenze.


Jetzt wüsste ich gerne, wie das Geogebra intern rechnet.


Vielen Dank für eine Erklärung!

LG, Martinius

        
Bezug
Regression: logist. Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Di 21.12.2010
Autor: abakus


> Hallo,
>  
> ich habe eine Frage zur Funktionsweise von Geogebra betr.
> das logistische Wachstum.
>  
> Ausgehend von:
>  
> [mm]y(t)=\frac{G}{1+k*exp(-rGt)}[/mm]
>  
>
> mit G = obere Schranke des Wachstums, A = y(0) Anfangswert
> der Population bei t = 0 und [mm]k=\frac{G-A}{A}[/mm]
>  
> kommt man auf die linearisierte Form:
>  
>
> [mm]z(t) = ln\left(\frac{1}{y}-\frac{1}{G} \right)=-r*G*t+ ln\left(\frac{1}{A}-\frac{1}{G} \right)[/mm]
>  
> Für die Regressionsgerade werden die t-Werte gegen die
> logarithmierten modifizierten y-Werte:
>
> [mm]z(t) = ln\left(\frac{1}{y}-\frac{1}{G} \right)[/mm]
>  
> aufgetragen. Dazu benötigt man aber schon den Zahlenwert
> für G - für die obere Wachstumsschranke! Auch in meinem
> (käuflich erworbenen) Rechen- & Statistikprogramm ist
> diese Angabe erforderlich.
>  
>
> In Geogebra hingegen ist die Angabe einer oberen
> Wachstumsgrenze nicht erforderlich - das Programm ermittelt
> aus t-Werten und y-Werten von sich aus eine obere Grenze.
>  
>
> Jetzt wüsste ich gerne, wie das Geogebra intern rechnet.

Hallo,
da solltest du die Entwickler fragen (Geogebra-Nutzerforum).
Gruß Abakus

>  
>
> Vielen Dank für eine Erklärung!
>  
> LG, Martinius


Bezug
                
Bezug
Regression: logist. Wachstum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:53 Di 21.12.2010
Autor: Martinius

Hallo Abakus,

hab vielen Dank für deine Antwort. Ich habe mich im user-Forum von Geogebra eingeloggt und dort meine Frage gestellt.

Ich stelle hier noch einmal die Frage auf unbeantwortet, für den Fall (mit wohl sehr geringer Wahrscheinlichkeit), dass jemand hier im Forum zufällig die Antwort wüsste.


LG, Martinius

Bezug
                        
Bezug
Regression: logist. Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Di 28.12.2010
Autor: Event_Horizon

Hallo!

Ich hab keine Ahnung, wie das intern tatsächlich geht.


Allerdings frage ich mich, warum es denn unbedingt  eine Regressionsgrade sein muß? Sicher, das gibt dir eine präzise Lösung, weil analytisch die beste Grade errechnet wird.

Aber es ist ja auch möglich, die Funktion so, wie sie ist,  direkt in die Daten einzupassen, beispielsweise mit der [mm]\chi^2[/mm]-Methode. Hier gibt es keine analytische Lösung, für die irgendwelche Formeln umgestellt werden müßten. Dabei werden die Parameter der Gleichung iterativ variiert, bis die Funktion die Daten möglichst perfekt beschreibt.

Sowas ist Gang und Gäbe, schließlich sind die wenigsten Funktionen so umzustellen, daß man anschließend eine lineare Regression durchführen kann.



Bezug
                                
Bezug
Regression: logist. Wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Di 28.12.2010
Autor: Martinius

Hallo Event Horizon,

besten Dank für deine Antwort!

Dann mache ich mich einmal auf die Suche nach der $ [mm] \chi^2 [/mm] $-Methode.


LG & guten Rutsch ins Neue Jahr,

Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "GeoGebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]