matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungRegressionsmodell
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - Regressionsmodell
Regressionsmodell < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regressionsmodell: Annahmen für OLS
Status: (Frage) beantwortet Status 
Datum: 15:43 Mi 26.08.2015
Autor: petrus

Hallo zusammen

In meinem Statistikkurs wird die Methode der kleinsten Quadrate besprochen. Ausgangspunkt ist das Regressionsmodell:

[mm] y_i [/mm] = [mm] x_i^T\beta [/mm] + [mm] \epsilon_i [/mm]
(im Lehrbuch auch geschrieben als [mm] y_i [/mm] = [mm] \beta_1 [/mm] + [mm] \beta_2x_{i2} [/mm] + [mm] \ldots [/mm] + [mm] \beta_Kx_{iK} [/mm] + [mm] \epsilon_i [/mm] oder y = [mm] X\beta [/mm] + [mm] \epsilon) [/mm]

Ich interpretiere das folgerndermassen: Das Regressionsmodell beschreibt den Datenbeschaffungsprozess ("sampling") / die Datengenerierung. Die Bevölkerung wird nur indirekt beschrieben (obwohl die [mm] \beta [/mm] im Lehrbuch als Bevölkerungseigenschaften ("population parameters") bezeichnet werden).

Ist diese Interpretation richtig / gut?

Vielen Dank für Eure Hilfe

Michael

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Regressionsmodell: Gesamtheit
Status: (Antwort) fertig Status 
Datum: 18:22 Mi 26.08.2015
Autor: Infinit

Hallo michael,
willkommen hier im Forum.
Mit der Übersetzung des Begriffs "population" musst Du hier vorsichtig sein. Der hat zwar durchaus was mit einer Bevölkerung zu tun und zwar in diesem Sinne, dass die die Gesamtheit eines Volkes duch die Bevölkerung gebildet wird, hier ist aber die mathematische Bedeutung dieses Wortes gemeint. In der Statistik meint man damit die Grundgesamtheit der Werte, die ein Modell beschreiben bzw. die Untersuchungsgesamtheit an Werten bei der Durchführung von Tests.  Hierfür setzt man Parameter ein, dies sind die "population parameters". Diese Parameter werden aus den vorhandenen Daten geschätzt, bei Dir sind dies [mm] \beta [/mm] und [mm] \epsilon [/mm].
Viele Grüße,
Infinit

Bezug
                
Bezug
Regressionsmodell: Richtig verstanden?
Status: (Frage) beantwortet Status 
Datum: 13:34 Sa 05.09.2015
Autor: petrus

Vielen Dank für Deine Antwort.

Ich habe darüber nachgedacht, und wäre froh, wenn Du mir sagen könntest, ob ich Dich richtig verstanden habe.

Du sagst

> In der Statistik meint man damit die Grundgesamtheit der Werte, die ein Modell beschreiben bzw. die Untersuchungsgesamtheit an Werten bei der Durchführung von Tests.

Ich versuch, das z.B. auf dieses Experiment anzuwenden: ich frage zufällige Leute aus meiner Gemeinde nach ihrem Schokoladenkonsum (-> Zufallsvariablen [mm] x_i) [/mm] und ihrem Gewicht (-> Zufallsvariablen [mm] y_i) [/mm] und versuche dann den Zusammenhang mittels OLS zu schätzen. Die Zufälligkeit der Variablen [mm] x_i [/mm] und [mm] y_i [/mm] rührt von der Auswahl der Probanden. Ich benütze ein Auswahlverfahren, das jeden Einwohner mit gleicher Wahrscheinlichkeit auswählt (z.B. mittels fairer Münze und Einwohnerregister).

In diesem Beispiel wäre die "Bevölkerung", wenn ich Dich richtig verstanden haben, alle möglichen Mengenwerte [mm] (\IR_{+}), [/mm] alle möglichen Gewichtswerte [mm] (\IR_{+}) [/mm] und alle möglichen Abweichungswerte [mm] (\IR). [/mm] Die "Bevölkerungsparamter" [mm] (\alpha, \beta) [/mm] charakterisieren eine angenommene Struktur in meinem Experiment: zur Analyse wird angenommen, dass für ein Experiment wie das Beschriebene stets gilt: [mm] y_i [/mm] = [mm] \alpha [/mm] + [mm] \beta x_i [/mm] + [mm] \epsilon_i [/mm] (mit zusätzlichen Anforderungen, wie bspw. Gauss-Markow-Annahmen). Die Parameter beschreiben die Einwohner meiner Gemeinde nur indirekt: würde ich ein anderes Probandenauswahlverfahren einsetzen, wären die Parameter andere (das triviale, unsinnige Verfahren, immer den gleichen Probanden auszuwählen, würde z.B. [mm] \beta [/mm] = 0 bedeuten).

Im Falle einer (grossen) endlichen Anzahl an Untersuchungsgegenständen (wie beispielsweise Einwohnern/Probanden) könnte man (würde ich als Anfänger) wie folgt argumentieren, dass das statistische Modell tatsächlich angebracht sein kann: der Prozess, der den Untersuchungsgegenständen bei ihrer Erstellung (z.B. Produktion oder Zeugung/Heranwachsen/Ausbildung/...) die betrachteten Eigenschaften zuweist, könnte seinerseits durch ein statistisches Modell beschrieben werden. Wenn dieses Modell angebracht ist (was der Forscher/Student/Schüler entscheiden muss) und das Modell mit dem bei der Untersuchung verwendeten Model verträglich ist, wird die Untersuchung relevante Resultate liefern (sofern die Probandenauswahl nur "zufällig genug" ist).

Vielen Dank für Eure Hilfe

Michael


Bezug
                        
Bezug
Regressionsmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 So 06.09.2015
Autor: Infinit

Hallo Michael,
ja, Deine "Bevölkerungsparameter" charakterisieren die Gesamtheit der Bevölkerung mit Hilfe der im Modell gewählten Parameter. Mathematisch betrachtet werden solche Parameter immer bestimmbar sein, z.B. nach der Methode der kleinsten quadratischen Fehlerabweichung, es kann aber natürlich sein, dass eine andere Modellbildung Dir noch besser passende Werte geliefert hätte. Das wirst Du aber natürlich nur rausfinden können, wenn Du mehrere Modelle einmal durchrechnest und ihre Ergebnisse miteinander vergleichst. Was Du aber auf jeden Fall weißt, ist, dass für das von Dir gewählte Modell die Parameterwerte, Die Du berechnest hast, die bestmöglichen sind. 
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 14m 5. Takota
SDiffRech/Linearer Differenzialoperator
Status vor 31m 14. Gonozal_IX
FunkAna/X nicht vollständig
Status vor 12h 02m 6. HJKweseleit
UAnaInd/Beweise vollständige Induktion
Status vor 14h 16m 1. Valkyrion
UStat/Gleitender Durchschnitt
Status vor 22h 15m 6. Gonozal_IX
UAnaSon/Infimum bestimmen(Variationsr)
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]