Reihe von tan aus sin und cos < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Leiten sie unter Verwendung der Potenzreihenentwicklungen für sinus und cosinus die Potenzreihe der Tangensfunktion tan x = sinx/cosx bis zur siebten potenz von x her. |
Hallo liebe Community,
ich habe mal wieder ein kleines Problem:
Ich will die Aufgabe lösen und mir fehlt jeder Ansatz. Ich habe mich auch geforscht und rausgefudnen dass eine Lösung mit Cauchyprodukt denkbar wäre. Leider hatten wir dieses in der Vorlesung noch nicht. Deshalb eine Frage:
-Gibt es einen direkteren Weg, als das Cauchyprodukt?
-Laut Wikipedia ist die Potenzreihe genau die Taylorentwickung um entwicklungspunkt x=0, stimmt das? Hatten wir in mathe auch nicht, aber ich kenne es aus der Physik. Würde die Potenreihe dann der entsprechen:
[mm]x+\bruch{1}{3}*x^3+\bruch{2}{15}*x^5...[/mm]
Danke schonmal im Vorraus!!
Ich habe die Frage sonst nirgendwo gestellt. Link zu Wiki: http://de.wikipedia.org/wiki/Tangens_und_Kotangens
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:57 So 03.11.2013 | Autor: | Infinit |
Hallo xxgenisxx,
mit einem Ansatz zu einem Koeffizientenvergleich kommst Du hier weiter, wenn die Reihenentwicklungen für den Sinus und den Cosinus gegeben sind:
Dazu schreibt man
[mm] f(x) = \bruch{\sin x}{\cos x} [/mm] um in eine Produktform und benutzt für f(x) den Potenzreihenansatz
[mm] f(x) = \sum_{n=0}^{\infty} a_n x^n [/mm]
Das führt also zur Darstellung
[mm] (1 - \bruch{x^2}{2!} + \bruch{x^4}{4!} - \bruch{x^6}{6!} + \bruch{x^8}{8!} + - ... ) \cdot (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + ...)= x - \bruch{x^3}{3!} + \bruch{x^5}{5!} - \bruch{x^7}{7!} + - ...) [/mm]
Und nun führst Du für jede Potenz einen Koeffzientenvergleich durch und kommst somit zu den Werten für die Tangens-Darstellung.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:07 So 03.11.2013 | Autor: | xxgenisxx |
Danke, dein Hinweis im Verbund mit dem Cauchyprodukt hat mich auf den richtigen Weg gebracht. Mir war nur nicht klar dass das Cauchyprodukt der Koeffizientenvergleich ist, den wir eigentlich shcon öfters gemacht hatten.
Danke ;D
|
|
|
|