matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihenkovergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Reihenkovergenz
Reihenkovergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenkovergenz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:08 Fr 15.06.2007
Autor: Zerwas

Aufgabe
Untersuchen Sie folgende Reihen auf Konvergenz:
(1) [mm] \summe_{k=1}^{\infty}(\bruch{1}{k^n}) [/mm] in Abhängigkeit von positivem [mm] n\in\IQ [/mm]
(2) [mm] \summe_{k=1}^{\infty}(\bruch{1}{k\wurzel{k}}) [/mm]
(3) [mm] \summe_{k=1}^{\infty}(-1)^k\wurzel{k} [/mm]
(4) [mm] \summe_{k=1}^{\infty}\wurzel{k} x^k [/mm] in Abhängigkeit von [mm] x\in\IR [/mm]

(1)
1.Fall: n=1
[mm] \summe_{k=1}^{\infty}(\bruch{1}{k}) [/mm] divergiert (ist als "standartreihe" bekannt)

2.Fall: n<1
Hier kann ich abschätzen:
[mm] (\bruch{1}{k^n})>(\bruch{1}{k}) [/mm] und damit ist die reihe konvergent.

3.Fall: n<1
Wie aber zeige ich das? Ich weiß zwar, dass die Reihe für n>1 konvergiert und zeigen könnte man es mit dem Integralkriterium. Dieses hatten wir jedoch in der Vorlesung nicht. Wie also sonst?

(2)
Hier habe ich das Problem dass ich weder mit dem Wurzelkrizerium [mm] (\wurzel[k]{\bruch{1}{k\wurzel{k}}}=\bruch{1}{\wurzel[k]{k\wurzel{k}}}=\bruch{1}{\wurzel[k]{k}\wurzel[2k]{k}} [/mm] müsste kleiner sein als 1 aber wie soll ich das zeigen?) oder mit dem Quotientenkriterium [mm] (|\bruch{\bruch{1}{(k+1)\wurzel{k+1}}}{\bruch{1}{k\wurzel{k}}}|=|\bruch{k\wurzel{k}}{(k+1)\wurzel{k+1}}| [/mm] müsste auch kleiner 1 sein aber wie zeigen?) weiter komme. Aber wie dann? Abschätzen? Aber wogegen?

(3)
Ist eine alternierende Reihe und konvergiert nach Leibnitz wenn [mm] \wurzel{k} [/mm] monoton fällt und gegen 0 konvergiert. [mm] \wurzel{k} [/mm] geht jedoch gegen [mm] \infty [/mm] für [mm] k\rightarrow\infty. \Rightarrow [/mm] die Reihe divergiert.

(4)
Wenn x=0 ist die Reihe [mm] O\forall [/mm] k und damit konvergent.
Aber wie weiter? Muss ich hier wirklich alle möglchen fälle abklappern wie x=1 x>1 0<x<1 oder kann ich das vllt eleganter machen?

Ich habe diese Frage auf keinem anderen Forum auf andern Internetseiten gestellt.

        
Bezug
Reihenkovergenz: Konvergenzkriterien
Status: (Antwort) fertig Status 
Datum: 22:10 Fr 15.06.2007
Autor: kochmn

Grüß Dich Zerwas,

(1): [mm] \summe_{k\in\IN} \bruch{1}{k^n} [/mm]

bekommst Du mit dem Cauchyschen Verdichtungssatz hin, mit
dem Du Deine Reihe auf die geometrische Reihe zurückführst:
Eine positive Reihe

[mm] \summe_{k\in\IN} a_n [/mm]

ist konvergent genau dann, wenn die verdichtete Reihe

[mm] \summe 2^n*a_{2^n} [/mm]

konvergent ist. Einen recht netten Beweis dazu findest Du
zum Beispiel im Heuser Band I.

(2): Die Reihe (2) ist ein Spezialfall der Reihe (1).

(3): Hast Du selber hinbekommen.

(4): Ich schätze für den Fall x>=1 hast Du Divergenz,
da bereits [mm] \summe \wurzel{k} [/mm] divergiert.

Den Rest bekommst Du mit dem Quotientenkriterium hin:

[mm] \bruch{\wurzel{k+1}*x^{k+1}}{\wurzel{k}*x^k} [/mm]

wird <1 für x<1.

Liebe Grüße
  Markus-Hermann.


Bezug
                
Bezug
Reihenkovergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Sa 16.06.2007
Autor: Zerwas

Gut vielen dank erstmal :)

(1)
1.Fall: [mm] n\le [/mm] 1:
[mm] \bruch{1}{k^n}\ge\bruch{1}{k} [/mm] und divergiert damit.

2.Fall: n>1:
Nach Cauchyschem Verdichtungskriterium konvergiert [mm] \summe_{k=1}^{\infty}\bruch{1}{k^n} [/mm] wenn [mm] \summe_{k=1}^{\infty}(2^k*\bruch{1}{k^n}) [/mm] konvergiert.
Jetzt hänge ich aber wieder.
Mit dem Quotientenkriterium komme ich auf:
[mm] \bruch{\bruch{2^{k+1}}{2^n*(k+1)^n}}{\bruch{2^k}{2^n*k^n}}=\bruch{2^{k+1}*2^n*k^n}{2^n*(k+1)^n*2^k}=\bruch{2*k^n}{(k+1)^n} [/mm] und jetzt?

(2)
Da zu fehlt mir ja dann die (1)

(3)
s.o.

(4)
1.Fall [mm] |x|\ge [/mm] 1:
Da bereits [mm] \wurzel{k} [/mm] divergiert, divergiert ein Vielfaches erst recht.

2.Fall |x|<1:
Quotientenkriterium:
[mm] \bruch{\wurzel{k+1}\cdot{}x^{k+1}}{\wurzel{k}\cdot{}x^k}=\bruch{\wurzel{k+1}\cdot{}x}{\wurzel{k}} [/mm] wie zeige ich jetzt aber hieb und stichfest, dass der Bruch <1 ist?

Bezug
                        
Bezug
Reihenkovergenz: Sätze richtig zitieren...
Status: (Antwort) fertig Status 
Datum: 16:32 Sa 16.06.2007
Autor: kochmn


>  
> 2.Fall: n>1:
>  Nach Cauchyschem Verdichtungskriterium konvergiert
> [mm]\summe_{k=1}^{\infty}\bruch{1}{k^n}[/mm] wenn
> [mm]\summe_{k=1}^{\infty}(2^k*\bruch{1}{k^n})[/mm] konvergiert.

Hmmm... nein so hatte ich dir den Verdichtungssatz nicht hingeschrieben!
Schau nocheinmal genau hin (hier ein direktes Zitat aus dem Heuser, Band I)

Cauchyscher Verdichtungssatz: Sind die Glieder einer Reihe
[mm] \summe {a_n} [/mm] nichtnegativ und nimmt überdies [mm] (a_n) [/mm] ab,
so ist [mm] \summe {a_n} [/mm] konvergent genau dann, wenn dies für die
"verdichtete Reihe" [mm] \summe 2^n a_{2^n} [/mm] zutrifft. Im
Konvergenzfall strebt somit [mm] 2^n a_{2^n} [/mm] gegen 0.

Für Dich heißt das: Zeige, dass

[mm] \summe 2^k [/mm] * [mm] a_{2^k} [/mm]

= [mm] \summe 2^k [/mm] * [mm] \bruch{1}{(2^k)^n} [/mm]

konvergiert für [mm] n=1+\varepsilon [/mm] mit [mm] \varepsilon>0 [/mm]
und divergiert für [mm] n=1-\varepsilon [/mm] mit [mm] \varepsilon<0, [/mm]
also im ersten Fall:

[mm] \summe 2^k [/mm] * [mm] \bruch{1}{(2^k)^{1+\varepsilon}} [/mm]

[mm] =\summe \bruch{1}{(2^k)^{\varepsilon}} [/mm]

[mm] =\summe (2^{-\varepsilon})^k [/mm]

und diese geometrische Reihe konvergiert, da

[mm] -1<(2^{-\varepsilon})<1 [/mm]

Für den zweiten Fall ergibt sich eben

[mm] 1<(2^{\varepsilon}) [/mm]

mit Divergenz und der Fall [mm] \varepsilon=0 [/mm] entspricht der harmonischen
Reihe, die Du bereits kennst.

Zu Deiner letzten Frage: Meine Art das Quotientenkriterium
anzuwenden (ich kenne zwei Methoden) geht so:

Untersuche, ob

[mm] lim_{k\to\infty} |\bruch{x*\wurzel{k+1}}{\wurzel{k}}| [/mm]

größer, kleiner oder gleich 1 ist. Nun: x ist zwar beliebig aber
fest und kann herausgezogen werden.

= |x|* [mm] lim_{k\to\infty} \bruch{\wurzel{k+1}}{\wurzel{k}} [/mm]

Und der Grenzwert des Wurzelbruchs ist 1 (zu zeigen z.B. mit
der Regel von de l'Hospital)

So. Ich hoffe nun stimmt alles, und dass Du etwas damit anfangen
kannst! Liebe Grüße
  Markus-Hermann.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]