Rekurrenz < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | folgende Markovkette mit Übergangswahrscheinlichkeiten [mm] p_{k,k+1}=p_{k,k-1}=\bruch{1}{2} [/mm] für [mm] i\ge [/mm] 1 und [mm] p_{0,1}=1
[/mm]
Ist die Kette rekurrent?
|
Hi zusammen!
Ich habe gerade folgende Aufgabe zu lösen und bin etwas verunsichert..
Also die MC ist mir so weit klar. Intuitiv würde ich auch sagen sie geht gegen + [mm] \infty. [/mm] Nun ist als Hinweis zur AUfgabe angegeben, man soll die Antwort über den Hauptsatz zum stationären Mass begründen.
Dieser Satz ist mir aber leider ein Rätsel.
Ich denke ich braue zuerst die allgemeine Lösung des Rekurrenzgleichungssystems, oder? Da beginnen die Probleme für mich schon! Wir hatten dies schon mal, aber da gab es Randbedingungen, welche ich jetzt nicht rauslesen kann..
Ach herje, ich bin etwas verzweifelt und wäre froh um einen Tipp wie ich da auf einen grünen Zweig komme. Vielen lieben Dank!!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Mi 29.04.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:37 Mi 29.04.2009 | Autor: | BBFan |
Könntest du mal den Zustandsraum der Markovkette angeben. Wäre hilfreich.
Gruss
BBFan
|
|
|
|
|
Wenn ich mir die Aufgabenstellung scharf anschaue, dann würde ich sagen, du hast es mit einer Art Random Walk zu tun, einzig die Anfangsbedingung [mm] p_{0,1}=1 [/mm] ist etwas anders. Sie wirkt im Prinzip so, wie eine Spiegelung an der x-Achse, wann immer man in den negativen Bereich gehen würde.
Intuitiv hast du es also mit dem Betrag eines gewöhnlichen RW zu tun. Ein 1-dim RW ist rekurrent, dann sollte es der Betrag auch sein.
|
|
|
|