matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionRekursion und Induktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Rekursion und Induktion
Rekursion und Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursion und Induktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:34 Di 20.06.2006
Autor: pretty_face

Aufgabe
(i) Mit Hilfe der Abschnittsrekursion zeige man, dass es genau eine Familie [mm] x\in\IN_0^{\IN_0} [/mm] mit den folgenden Eigenschaften gibt:
(I) [mm] x_0=0 [/mm] (II) [mm] x_1=1 [/mm] (III) [mm] x_{n+2}= x_n [/mm] + [mm] x_{n+1} [/mm] für jedes [mm] n\in\IN [/mm]

(ii) Mit vollständiger Induktion beweise man, dass für die gemäß (i) definierte Familie x mit der Abkürzung [mm] w:=\wurzel{5} [/mm] gilt:

[mm] x_n [/mm] = [mm] \bruch{1}{w} (\bruch{1+w}{2})^n [/mm] - [mm] \bruch{1}{w} (\bruch{1-w}{2})^n [/mm]

Hallo!

Kann mir jemand mit der Aufgabe weiterhelfen?

Meine Idee:

(i) da hab ich überhaupt keine Ahnung, was ich da machen muss

(ii) Beweis: durch Induktion: für n=k

k=0

0=0= [mm] \bruch{1}{w} [/mm]  - [mm] \bruch{1}{w} [/mm] = [mm] \bruch{1}{w} (\bruch{1+w}{2})^0 [/mm] - [mm] \bruch{1}{w} (\bruch{1-w}{2})^0 [/mm]

k=1

1=1= [mm] \bruch{w}{2w} [/mm]  + [mm] \bruch{w}{2w} [/mm] = [mm] \bruch{1}{w} (\bruch{1+w}{2})^1 [/mm] - [mm] \bruch{1}{w} (\bruch{1-w}{2})^1 [/mm]


n= k+1

[mm] x_{k+1}= x_{k-1} [/mm] + [mm] x_k [/mm]

= [mm] \bruch{1}{w} (\bruch{1+w}{2})^{k-1} [/mm] - [mm] \bruch{1}{w} (\bruch{1-w}{2})^{k-1}+\bruch{1}{w} (\bruch{1+w}{2})^k [/mm] - [mm] \bruch{1}{w} (\bruch{1-w}{2})^k [/mm]
=
=
=
=
=
= [mm] \bruch{1}{w} (\bruch{1+w}{2})^{k+1} -\bruch{1}{w} (\bruch{1+w}{2})^{k+1} [/mm]


Nur wie komme ich auf das Ergebnis? (also wie sind die Zwischenschritte?) Hat jemand eine Ahnung, wie ich da ran gehen muss?



Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://matheplanet.com

        
Bezug
Rekursion und Induktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 27.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]