matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisRekursionen Lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Rekursionen Lösen
Rekursionen Lösen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursionen Lösen: Prinzipielles Vorgehen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:35 Di 07.06.2005
Autor: MrPink

Hallo,

ich muss einige Rekursionen lösen, d.h. die explizite Darstellung bestimmen. Ich weiss allerdings nur bei Bestimmten Funktion ( z.B) Fib-Zahlen, was ich zu tun habe, da ich weiss wie man Funktionen in dieser Form löst. Ich wollte aber wissen wie man prinzipiell daran geht, und was es in dieser Beziehung so alles für Arten von Lösungsansätzen gibt.

Zum Beispiel wenn ich Funktionen in der Form a*f(n+4)+b*f(n+3)+c*f(n+2)+d*f(n+1)+e*f(n)=k(n) habe.

Wie würde ich solche funktionen vom Prinzip lösen, dafür gibt es doch bestimmt einen allgemeinen Ansatz. Was Wäre wenn k(n)=0 , da gibt es doch irgendwas mit homogenes und inhomogenes Problem !?!? Kann mir jemand das Ganze mal Prinzipiell Erläutern ? Vielen Dank im Voraus.


        
Bezug
Rekursionen Lösen: Was ist hier rekursiv?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:53 Di 07.06.2005
Autor: Paulus

Hallo MrPink

>
> Zum Beispiel wenn ich Funktionen in der Form
> a*f(n+4)+b*f(n+3)+c*f(n+2)+d*f(n+1)+e*f(n)=k(n) habe.

>
  
Ich sehe beim besten Willen nicht, was denn hier rekursiv sein soll.

Setze doch einfach die Definitionen deiner f(i) ein, und schon hast du k(n) berechnet! Wo ist denn hier das Problem?

Zeige doch bitte mal ein konkretes Beispiel, aber nicht die Fibonacci-Folge! Wirklich ein Beispiel deiner aktuellen Aufgabe!


Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]