matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenRekursivefolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Rekursivefolgen
Rekursivefolgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursivefolgen: Idee
Status: (Frage) beantwortet Status 
Datum: 00:40 Di 27.11.2012
Autor: Joker08

Aufgabe
Sei a>0 eine reellle und [mm] k\ge2 [/mm] eine natürliche Zahl.

a) Zeigen Sie, dass für jeden Startwert [mm] x_0>0 [/mm] die rekursiv durch

[mm] x_n+1:= \bruch{1}{k} [/mm] ( [mm] (k-1)x_n+\bruch{a}{x_n^{k-1}}) [/mm] definierte Folge gegen einen Grenzwert x>0 konvergiert.

Zeige zunächst [mm] x_n>0, [/mm] sowie mit der Benoulli Ungleichung dass [mm] x_n^k\ge [/mm] a für alle [mm] n\ge1 [/mm]

Mir bereitet folgendes schwierigkeiten:

Zeige  [mm] x_n^k \ge [/mm] a

[mm] (\bruch{1}{k} ((k-1)x_n+\bruch{a}{x_n^{k-1}})^k [/mm]

[mm] \ge \bruch{1}{k}( ((k-1)x_n+k*\bruch{a}{x_n^{k-1}}) [/mm]

<=> [mm] \bruch{k-1}{k}*x_n+\bruch{a}{x_n^{k-1}} [/mm]

Aber irgendwie bringt mich das nicht weiter :/

        
Bezug
Rekursivefolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:16 Di 27.11.2012
Autor: Helbig

Hallo Joker08,

> Sei a>0 eine reellle und [mm]k\ge2[/mm] eine natürliche Zahl.
>  
> a) Zeigen Sie, dass für jeden Startwert [mm]x_0>0[/mm] die rekursiv
> durch
>  
> [mm]x_n+1:= \bruch{1}{k}[/mm] ( [mm](k-1)x_n+\bruch{a}{x_n^{k-1}})[/mm]
> definierte Folge gegen einen Grenzwert x>0 konvergiert.
>  
> Zeige zunächst [mm]x_n>0,[/mm] sowie mit der Benoulli Ungleichung
> dass [mm]x_n^k\ge[/mm] a für alle [mm]n\ge1[/mm]
>  Mir bereitet folgendes schwierigkeiten:
>  
> Zeige  [mm]x_n^k \ge[/mm] a
>  
> [mm](\bruch{1}{k} ((k-1)x_n+\bruch{a}{x_n^{k-1}})^k[/mm]
>  
> [mm]\ge \bruch{1}{k}( ((k-1)x_n+k*\bruch{a}{x_n^{k-1}})[/mm]
>  
> <=> [mm]\bruch{k-1}{k}*x_n+\bruch{a}{x_n^{k-1}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> Aber irgendwie bringt mich das nicht weiter :/

Bringe für $x>0$ den Term $\frac 1 k (k-1)x + \frac a {x^{k-1}$ auf die Form $1+y$, zeige $y>-1$ und wende dann Bernoulli auf $(1+y)^k$ an.

Grüße,
Wolfgang


Bezug
                
Bezug
Rekursivefolgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:46 Di 27.11.2012
Autor: Joker08

Hi vielen dank.
Ich habe es hinbekommen.
Ob es stimmt werde ich dann ja am Ende sehen ;)

Die Lösung werde ich dann ggf. hier für die Nachwelt posten.

Lg. Joker

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]