matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesRelation: antisymmetrisch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Relation: antisymmetrisch
Relation: antisymmetrisch < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation: antisymmetrisch: Schönere Definition?
Status: (Frage) beantwortet Status 
Datum: 09:36 Mi 04.11.2009
Autor: ZodiacXP

Aufgabe
[mm] $\forall [/mm] a,b [mm] \in [/mm] A: (a,b) [mm] \in [/mm] R [mm] \wedge [/mm] (b,a) [mm] \in [/mm] R [mm] \Rightarrow [/mm] a=b$

Dies ist die weit verbreitet Definition welche heißen soll: Wenn keine Symmetrie herrscht und aus a~b und b~a stets a=b folgt ist es antisymmetrisch.

Mir fehlt bei der Definition irgendwie dieses "nicht Symmetrisch". Sollte man nicht folgendes schreiben:

[mm] $\forall [/mm] a,b [mm] \in [/mm] A: ((a,b) [mm] \in [/mm] R [mm] \wedge [/mm] a [mm] \not= [/mm] b [mm] \Rightarrow [/mm] (b,a) [mm] \notin [/mm] R) [mm] \underline{\vee} [/mm] ((a,b) [mm] \in [/mm] R [mm] \wedge [/mm] (b,a) [mm] \in [/mm] R [mm] \Rightarrow [/mm] a=b)$

Oder nur:
[mm] $\forall [/mm] a,b [mm] \in [/mm] A: (a,b) [mm] \in [/mm] R [mm] \wedge [/mm] a [mm] \not= [/mm] b [mm] \Rightarrow [/mm] (b,a) [mm] \notin [/mm] R$

Da wird es doch viel deutlicher.

        
Bezug
Relation: antisymmetrisch: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Mi 04.11.2009
Autor: Gonozal_IX

Hiho,

was du machst, ist einfach logisch Äquivalente Definitionen aufzuschreiben, im letzten Fall eine Art Kontraposition.

Ob das jetzt schöner ist, bleibt jedem sich selbst überlassen.
Da es aber das gleiche aussagt, ist es egal, wie du es aufschreibst.

Im ersten Fall heisst es ja einfach nur:

Wenn [mm] $a\sim [/mm] b$ UND [mm] $b\sim [/mm] a$ gilt, folgt daraus direkt, dass $a=b$ ist, in Formeln also:

[mm] $a\sim [/mm] b [mm] \wedge b\sim [/mm] a [mm] \Rightarrow [/mm] a=b$

Kontraposition: $ [mm] a\not= [/mm] b [mm] \Rightarrow [/mm] a [mm] \not\sim [/mm] b [mm] \vee [/mm] b [mm] \not\sim [/mm] a$

Wie man es nun also aufschreibt, ist Latte wie Hose ;-)
bzw. hängt vom persönlichen Ästetikempfinden ab, allerdings sind Gleichungen etc immer schöner, als Negationen wie [mm] \not= [/mm] oder [mm] \not\sim [/mm]

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]