matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAxiomatische MengenlehreRelation auf Potenzmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Axiomatische Mengenlehre" - Relation auf Potenzmenge
Relation auf Potenzmenge < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation auf Potenzmenge: Beweis
Status: (Frage) beantwortet Status 
Datum: 15:18 Sa 01.11.2008
Autor: werner123

Aufgabe
Es sei A eine Menge.[mm] R={(X;Y)|X \subseteq A \wedge Y \subseteq A \wedge X \subseteq Y} [/mm] ist dann eine Relation auf der Potenzmenge P(A). Ist R reflexiv? Beweis

Ich weiß nicht so recht wie ich an diesen Beweis herangehen soll. Über jede Hilfe wäre ich sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Relation auf Potenzmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Sa 01.11.2008
Autor: pelzig


> Es sei A eine Menge.[mm] R={(X;Y)|X \subseteq A \wedge Y \subseteq A \wedge X \subseteq Y}[/mm]
> ist dann eine Relation auf der Potenzmenge P(A). Ist R
> reflexiv? Beweis
>  
> Ich weiß nicht so recht wie ich an diesen Beweis herangehen
> soll. Über jede Hilfe wäre ich sehr dankbar.

Mache dir klar, dass bzgl. dieser Relation oben zwei Teilmengen [mm] $X,Y\subseteq [/mm] A$ genau dann in Relation stehen, wenn [mm] $X\subseteq [/mm] Y$. Die Frage nach der Reflexivität ist also die Frage, ob [mm] $X\subseteq [/mm] X$ für eine beliebige Teilmenge [mm] $X\subseteq [/mm] A$ gilt - sollte also kein allzu großes Problem sein.

Edit: Im Mathemodus musst du die Mengenklammern mit einem Backslash davor schreiben, also \{a,b,c\} statt {a,b,c}. Die geschweiften Klammern haben nämlich schon eine eigene Bedeutung.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]