matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenRelation auf einer Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Relation auf einer Menge
Relation auf einer Menge < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation auf einer Menge: Hilfe, Schwierigkeiten
Status: (Frage) beantwortet Status 
Datum: 21:38 Mi 17.11.2010
Autor: Balsam

Aufgabe
Gegeben sei die Menge= [mm] /{1,2,3,4...,10\} [/mm] und die Relation R [mm] \subset [/mm] MxM  durch die Vorschrift  
R= {(x,y) | 4|x [mm] \wedge \wurzel{y} \in M\} [/mm]

Geben Sie R explizit an



Hallo,
nur eine Zahl aus der Menge M kann den "Kriterien" entsprechen und das wäre die Zahl 2
Aber meine Schwierigkeit besteht nun darin, dass ich nicht weiß wie ich es aufschreiben soll.

Ich hoffe Ihr könnt mir helfen...

        
Bezug
Relation auf einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Mi 17.11.2010
Autor: glie


> Gegeben sei die Menge= [mm]\{1,2,3,4...,10\}[/mm] und die Relation R
> [mm]\subset[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

MxM  durch die Vorschrift  

> R= \{(x,y) | 4|x [mm]\wedge \wurzel{y} \in M\}[/mm]
>  
> Geben Sie R explizit an
>  
>
> Hallo,
>  nur eine Zahl aus der Menge M kann den "Kriterien"
> entsprechen und das wäre die Zahl 2
>  Aber meine Schwierigkeit besteht nun darin, dass ich nicht
> weiß wie ich es aufschreiben soll.

Hallo,

mach dir erstmal klar, was $M [mm] \times [/mm] M$ genau ist, das ist die Menge aller Zahlenpaare $(x/y)$ mit $x [mm] \in [/mm] M$ und $y [mm] \in [/mm] M$.

Also $M [mm] \times M=\{(1/1),(1/2),(1/3),...(10/10)\}$ [/mm]

Die Menge R ist eine Teilmenge von $M [mm] \times [/mm] M$, nämlich diejenige, die genau die Zahlenpaare enthält, für die x ein Vielfaches von 4 ist und gleichzeitig auch noch die Wurzel aus y wieder ein Element von M ist.

Da fallen mir doch folgende Zahlenpaare ein:

(4/1),(8/1),(4/4),(8/4),(4/9),(8/9)

Klar warum?

Gruß Glie


>  
> Ich hoffe Ihr könnt mir helfen...


Bezug
                
Bezug
Relation auf einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:56 Mi 17.11.2010
Autor: Balsam

Danke erst einmal

Ich habe den Fehler gemacht dass ich x=y gesetzt habe.

Ich habe es verstanden, aber wie schreibe ich es auf?
Ich dachte, ich müsste die Relation auseinander ziehen und die Elemente einzeln beweisen.

Und ist nun R symmetrisch, denn es folgt ja für (x, y) [mm] \in [/mm] M aus (x, y) [mm] \in [/mm] R auch (y, x) [mm] \in [/mm] R

Bezug
                        
Bezug
Relation auf einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mi 17.11.2010
Autor: glie

Na du schreibst einfach

[mm] $R=\{(4/1),(4/4),...,(8/9)\}$ [/mm]

Symmetrisch ist R offensichtlich nicht, denn es ist zum Beispiel (9/8) kein Element von R, denn [mm] $\wurzel{8}\not \in [/mm] M$

Gruß Glie

Bezug
                                
Bezug
Relation auf einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Mi 17.11.2010
Autor: Balsam

Stimmt symmetrisch kann R nicht sein,
aber auch nicht antisymmetrisch oder transitiv.

Denn antisymmetrisch würde die Gleichheit folgen x=y
dies ist nicht der Fall

Und bei transitiv gilt x,y,z [mm] \inM [/mm]
da dies auch nicht der Fall ist würde somit nur noch reflexiv in Frage stehe aber das kann ich mir nicht erklären.



Bezug
                                        
Bezug
Relation auf einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Mi 17.11.2010
Autor: glie

R kann nicht reflexiv sein weil z.B. (5/5) nicht in R ist.

Gruß Glie

Bezug
                                                
Bezug
Relation auf einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Mi 17.11.2010
Autor: Balsam

Aber welche Eigenschaft besitzt R denn?

Gibt es Relationen ohne Eigenschaften?



Bezug
                                                        
Bezug
Relation auf einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Mi 17.11.2010
Autor: glie

Ja gibt es.

Ich würde aber transitiv nochmal genau untersuchen.

Lies dazu mal []hier.


Gruß Glie

Bezug
                                                                
Bezug
Relation auf einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:07 Mi 17.11.2010
Autor: Balsam

Transitiv hatte mich irritiert wegen x,y und z

[mm] \forall [/mm] x, y, z [mm] \inM [/mm] : xRy [mm] \wedge [/mm] yRz [mm] \Rightarrow [/mm] xRz

würde die richitge Eigenschaft darstellen, obwohl ich nur x und y hatte?

Bezug
                                                                        
Bezug
Relation auf einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 02:30 Do 18.11.2010
Autor: leduart

Hallo
du hast doch verschiedene Paare, und Namen sind doch nicht wichtig,

du musst also zwei Paare , die du xy und yz nennst. dabei ist y natürlich dasselbe y.
Gruss leduart


Bezug
                                                                                
Bezug
Relation auf einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 Do 18.11.2010
Autor: Balsam

Dann müsste es so aussehen:
[mm] \forall [/mm] (x,y) , (y,z) [mm] \in [/mm] M : xyRyz [mm] \wedge [/mm] yzRxz = xyRxz

Bezug
                                                                                        
Bezug
Relation auf einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Do 18.11.2010
Autor: glie


> Dann müsste es so aussehen:
>  [mm]\forall[/mm] (x,y) , (y,z) [mm]\in[/mm] M : xyRyz [mm]\wedge[/mm] yzRxz = xyRxz


Du musst exakter mit den Definitionen und Mengen umgehen.

Gegeben ist ja zunächst mal die Menge $M [mm] \times [/mm] M$.
Diese Menge besteht ja aus allen Zahlenpaaren (../..) mit Einträgen jeweils aus M.

Und ganz bestimmte Zahlenpaare sind in der Menge R enthalten, genau diejenigen, die halt diese Vorschrift erfüllen.

Und jetzt ist eben die Frage, ob immer dann wenn (x/y) und (y/z) in R enthalten ist dann auch (x/z) in R enthalten ist.

Gibt ja nicht so viele Paare in R, bei denen zweite und erste Zahl übereinstimmen und die verschieden sind.

(4/4) und (4/1) zum Beispiel und da gilt ja dann auch wieder dass  (4/1) in R liegt.

(4/4) und (4/9) ebenfalls und auch da ist  (4/9) wieder in R.

Gruß Glie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]