matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreRelation skizzieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Relation skizzieren
Relation skizzieren < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation skizzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Sa 20.11.2010
Autor: fraiser

Aufgabe
Es sei M:=[0,1]. Skizzieren Sie die wie folgt definierte Relation in MxM.

[mm] (x,y)\inC:\gdw|x-y|\le0,5 [/mm]


Hi,

ich weiß leider nicht was ich mit |x-y| anfangen soll.
Ist das nicht immer null, weil x=y?
Bei x<y wäre x=y. Aber was, wenn beides auf einer Seite ist?
Kann man einfach Umformen zu x [mm] \le [/mm] y+0,5 weil M negative Werte ausschließt?

Vielen Dank!
MfG
fraiser

        
Bezug
Relation skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Sa 20.11.2010
Autor: Sax

Hi,

Mit M = [0 ; 1] wird  M [mm] \times [/mm] M  das Einheitsquadrat im ersten Quadranten.
Gesucht ist das Gebiet  G = { (x,y) [mm] \in [/mm] M [mm] \times [/mm] M | [mm] |x-y|\le0,5 [/mm]  }

Erster Lösungsweg : anschaulich :
[mm] |x-y|\le0,5 [/mm] bedeutet doch, dass der Abstand von x und y nicht mehr als 0,5 betragen darf, d.h. dass y nicht mehr als 0,5 von x entfernt sein darf, d.h. dass y nicht kleiner als x-0,5 und nicht größer als x+0,5 werden darf.

Zweiter Lösungsweg : formal :
Unterscheide die Fälle x [mm] \ge [/mm] y, dort ist x-y [mm] \ge [/mm] 0 ,  also |x-y| = x-y einerseits und x < y , dort ist x-y < 0 , also |x-y| = y-x. Löse die entstehenden Ungleichungen nach y auf und skizziere G.

Es ergibt sich übrigens ein Sechseck.



>  
> ich weiß leider nicht was ich mit |x-y| anfangen soll.
>  Ist das nicht immer null, weil x=y?

Es ist genau dann 0, wenn x=y ist, aber das muss doch nicht immer der Fall sein.

>  Bei x<y wäre x=y.

Was soll das bedeuten ?

> Aber was, wenn beides auf einer Seite ist?

Von welcher Seite sprichst du ?

>  Kann man einfach Umformen zu x [mm]\le[/mm] y+0,5 weil M negative
> Werte ausschließt?

>

Nur in einem gewissen Spezialfall (s.o.), das hat aber nichts mit M zu tun.
  

> Vielen Dank!
>  MfG
>  fraiser

Gruß Sax.

Bezug
                
Bezug
Relation skizzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Sa 20.11.2010
Autor: fraiser

Aber ist die Fallunterscheidung dann nicht bei x [mm] \ge [/mm] 0:
x-y [mm] \le [/mm] 0,5 [mm] \gdw [/mm] x [mm] \le [/mm] y+0,5

und für x<0:
-(x-y) [mm] \le [/mm] 0,5 [mm] \gdw [/mm] -x+y [mm] \le [/mm] 0,5 [mm] \gdw [/mm] x [mm] \ge [/mm] -y-0,5

???

Bezug
                        
Bezug
Relation skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Sa 20.11.2010
Autor: Sax

Hi,

deine Fallunterscheidung ist Quatsch, weil doch sowieso x [mm] \ge [/mm] 0 vorausgesetzt ist. Ich hatte sie dir doch schon geschrieben.
Deine letzte Umformung enthält außerdem einen Vorzeichenfehler.

Gruß Sax.

Bezug
                                
Bezug
Relation skizzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:49 So 21.11.2010
Autor: fraiser

Vielen Dank, habe es jetzt raus.
War echt eine "Geburt" aber jetzt verstehe ich es.

MfG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]