matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenRelation vs. Abbildung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Relationen" - Relation vs. Abbildung
Relation vs. Abbildung < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation vs. Abbildung: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 19:26 Mi 23.01.2019
Autor: magics

Aufgabe
Zitate aus der Literatur:

"Eine Relation f zwischen M und N heißt eine Abbildung von M nach N, falls sie linkstotal und rechtseindeutig ist."

und

"Eine Abbildung $f:M [mm] \to [/mm] N$" heißt injektiv, falls sie linkseindeutig ist, surjektiv, falls sie rechtstotal ist und bijektiv, falls sie injektiv und surjektiv ist.

Hallo,

die Eigenschaften linkseindeutig und rechtstotal bedeuten offensichtlcich Bijektivität.

Wenn ich eine Funktion invertiere drehen sich diese Eigenschaften um (also ein linkseindeutiges und rechtstotales $f$ wird zu einem rechtseindeutigen und linkstotalen [mm] $f^{-1}$. [/mm]

Bedeutet dann nicht auch, dass eine rechtseindeutige und linkstotal Abbildung bijektiv ist?

Gruß
Thomas

        
Bezug
Relation vs. Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mi 23.01.2019
Autor: chrisno

Ein entscheidendes "wenn"
> ...
> Wenn ich eine Funktion invertiere ...

Das musst Du auch können. Nicht jede Funktion ist invertierbar. Nimm $f(x) = [mm] x^2$ [/mm] zum Beispiel.

Bezug
        
Bezug
Relation vs. Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:46 Do 24.01.2019
Autor: fred97


> Zitate aus der Literatur:
>  
> "Eine Relation f zwischen M und N heißt eine Abbildung von
> M nach N, falls sie linkstotal und rechtseindeutig ist."
>  
> und
>  
> "Eine Abbildung [mm]f:M \to N[/mm]" heißt injektiv, falls sie
> linkseindeutig ist, surjektiv, falls sie rechtstotal ist
> und bijektiv, falls sie injektiv und surjektiv ist.
>  Hallo,
>  
> die Eigenschaften linkseindeutig und rechtstotal bedeuten
> offensichtlcich Bijektivität.
>  
> Wenn ich eine Funktion invertiere drehen sich diese
> Eigenschaften um (also ein linkseindeutiges und
> rechtstotales [mm]f[/mm] wird zu einem rechtseindeutigen und
> linkstotalen [mm]f^{-1}[/mm].

Räumen wir auf: gegeben sei also eine Abbildung $f:M [mm] \to [/mm] N$.

Dann ist $f$  linkstotal und rechtseindeutig . Ist $f$ zusätzlich auch noch bijektiv, so hat $f$ alle vier Eigenschaften:

     linkstotal,  rechtseindeutig , linkseindeutig unf rechtstotal.

Ist $f$ bijektiv, so ist auch [mm] $f^{-1}:N \to [/mm] M$ eine bijektive Abbildung und hat damit ebenfalls alle vier Eigenschaften:

     linkstotal,  rechtseindeutig , linkseindeutig unf rechtstotal.

>  
> Bedeutet dann nicht auch, dass eine rechtseindeutige und
> linkstotal Abbildung bijektiv ist?.

Natürlich nicht ! Denn dann wäre ja jede(!) Abbildung bijektiv !


>  
> Gruß
>  Thomas


Bezug
                
Bezug
Relation vs. Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Do 24.01.2019
Autor: magics

Vielen Dank, das hat mir sehr geholfen! Ich ging aus irgendeinem Grund davon aus, dass sich Links- und Rechtstotalität gegenseitig ausschließen. Trotzdem noch eine kleine Rückfrage:

Ich habe überlegt, ob es Relationen geben kann, die keine der vier Eigenschaften haben. Kann es sein, dass jede Art von Relation zumindest linkstotal ist? Denn mit einer Relation muss ich quasi auch einen Definitionsraum angeben, salopp gesagt, genau die Menge an Zahlen, die bei den Relationspaaren links stehen.

Grüße
Thomas

Bezug
                        
Bezug
Relation vs. Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Do 24.01.2019
Autor: fred97


> Vielen Dank, das hat mir sehr geholfen! Ich ging aus
> irgendeinem Grund davon aus, dass sich Links- und
> Rechtstotalität gegenseitig ausschließen. Trotzdem noch
> eine kleine Rückfrage:
>  
> Ich habe überlegt, ob es Relationen geben kann, die keine
> der vier Eigenschaften haben. Kann es sein, dass jede Art
> von Relation zumindest linkstotal ist?



Nein. Nimm  [mm] M=\{1,2\} [/mm] und [mm] R=\{(2,2)\}. [/mm]  R ist eine Relation,  aber nicht linkstotal




Denn mit einer

> Relation muss ich quasi auch einen Definitionsraum angeben,
> salopp gesagt, genau die Menge an Zahlen, die bei den
> Relationspaaren links stehen.
>  
> Grüße
>  Thomas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1d 15h 08m 5. Gonozal_IX
SIntRech/Mittlere Geschwindigkeit
Status vor 1d 20h 03m 6. luis52
SStochWkeit/Normalverteilung
Status vor 1d 20h 55m 3. magics
UDiskrMath/Restklassen und Erzeuger
Status vor 4d 4. Marc
SVektoren/Dreieck, Viereck
Status vor 5d 4. fred97
SGanzratFkt/Schnittpunkt
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]