matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieRelationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Graphentheorie" - Relationen
Relationen < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Aufgabe 1
Status: (Frage) überfällig Status 
Datum: 18:25 Fr 17.11.2006
Autor: DMG

Aufgabe
Gibt es Zahlen n,k [mm] \in \IN [/mm] , sodass [mm] (2^{ {0,....,n} },\subseteq) [/mm] isomorph zu [mm] ({0,...,k},\le) [/mm] ist?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich weiß nicht, ob es wichtig ist, aber bei dem Ausdruck [mm] (2^{ {0,....,n} },\subseteq) [/mm] muss der Wert 0,....,n in geschweiften Klammern stehen.
Nun meine Frage und meine Ansätze.
Isomorph bedeutet, dass eine Bijektion existiert zwischen den Relationen. [mm] (2^{ {0,....,n} },\subseteq) [/mm] ist eine Halbordnung und [mm] ({0,...,k},\le) [/mm] eine totale Halbordnung. Dabei ist [mm] ({0,...,k},\le) [/mm] eine aufsteigende Ordnung in einem [mm] Strang,(2^{ {0,....,n} },\subseteq) [/mm] hat dagegen eine verzweigte Struktur, da es ja die Potenzmenge ist oder irre ich mich?
Jedenfalls können diese beiden Relationen gar nicht bijektiv sein oder? Da sie völlig verschiedene Zuordnung und eigentlich auch unterschiedlich viele Elemente haben. Könnte mir jemand sagen, ob meine Überlegung richtig ist oder ich einfach einen Knick in der Logik habe.

mfg Gunnar


        
Bezug
Relationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 21.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]