matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraRelationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Relationen
Relationen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Hilfe
Status: (Frage) beantwortet Status 
Datum: 14:51 Do 30.12.2004
Autor: SusPie6

Hi ihr,

ich nutze gerade die freie Zeit, um mich für die Prüfungen im Januar und Februar vorzubereiten. Dabei wiederhole ich die Übungsaufgaben, welche wir wöchentlich bekommen haben. Leider komme ich teilweise nicht weiter beziehungsweise bin ich mir nicht sicher, ob meine Gedankengänge richtig sind. Über eure Hilfe würde ich mich wahnsinnig doll freuen.

1. Aufgabe:

Schreiben Sie formal
a) Es gibt höchstens ein x [mm] \in [/mm] M, für das die Aussage p gilt.
b) Es gibt genau ein x [mm] \in [/mm] M, für das die Aussage p gilt.

Ich habe folgende Lösungen:
a) [mm] \exists [/mm] x [mm] \in [/mm] M: [mm] \forall [/mm] y [mm] \in [/mm] M \ {x} : (nicht) p(y)

b) [mm] \exists [/mm] x [mm] \in [/mm] M: p(x) [mm] \wedge \forall [/mm] y [mm] \in [/mm] M \ {x} : (nicht) p(y)

Geht das denn so???


2. Aufgabe:

Zeigen Sie, dass die Teilerrelation eine Ordnungsrelation ist.

Dazu:
m/n : [mm] \gdw \exists [/mm] k [mm] \in \IN [/mm] : n=km
(Dies ist ja eine Ordnungsrelation auf den natürlichen Zahlenbereich.)

i) Reflexivität: m/m [mm] \gdw \exists [/mm] 1 [mm] \in \IN [/mm] : m= 1*m

ii) Antisymmetrie: m/n [mm] \wedge [/mm] n/m [mm] \Rightarrow [/mm] m=n
                            m/n [mm] \gdw \exists [/mm] k1 [mm] \in \IN [/mm] : n=k1m
                            n/m [mm] \gdw \exists [/mm] k2 [mm] \in \IN [/mm] : m=k2n
   n=k1(k2n)=(k1k2)n [mm] \Rightarrow [/mm] k1=k2=1 [mm] \Rightarrow [/mm] n=1*m
                                                                                        m=1*n
                                                                                        m=n

iii) Transitivität: m/n [mm] \wedge [/mm] n/p [mm] \Rightarrow [/mm] m/p
                         m/n [mm] \gdw \exists [/mm] k1 [mm] \in \IN [/mm] : n=k1m
                         n/p [mm] \gdw \exists [/mm] k2 [mm] \in \IN [/mm] : p=k2n
                         p=k2(k1m)=(k1k2)m
                         m/p.

Und???


3. Aufgabe:

Auf [mm] \IZ [/mm] x ( [mm] \IZ \backslash \{ 0 \} [/mm] sei die Relation [mm] \sim [/mm] definiert durch (a,b) [mm] \sim [/mm] (c,d) : [mm] \gdw [/mm] ad=bc. Zeigen Sie, dass [mm] \sim [/mm] eine Äquivalenzrelation ist.

Dazu habe ich leider keine Ansätze, aber ich wäre euch sehr dankbar, wenn ihr mir da weiter helfen könntet.

Vielen Dank im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Do 30.12.2004
Autor: moudi

Zur  1. Aufgabe: Das ist ok.

Zur 3. Aufgabe: Das ist gerade die Aequivalenz von Brüchen wenn man
(a,b) als Bruch  [mm]\frac{a}{b}[/mm] interpretiert. Die Aequivalenzklassen
sind dann diejenigen Mengen von Brüche, die die gleiche rationale Zahl liefern.

Mit dieser Interpretation im Kopf sollte es eigentlich nicht  so schwierig sein.

mfg Moudi

Bezug
        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Do 30.12.2004
Autor: maria

2.Aufgabe:das ist richtig
3.Aufgabe:
(a,b) mit [mm] b\not=0 [/mm]
(c,d) mit [mm] d\not=0 [/mm]

[mm] \underbrace{(a,b) }_{=x}\sim \underbrace{(c,d)}_{=y}: \gdw [/mm] ad=bc

1. Reflexivität: [mm] x\sim [/mm] x: [mm] (a,b)\sim(a,b):\Rightarrow [/mm] ab=ab
2. Symmetrie: [mm] x\sim [/mm] y [mm] \Rightarrow y\sim [/mm] x: [mm] (a,b)\sim [/mm] (c,d) [mm] \gdw [/mm] ad=bc
                                            [mm] \gdw [/mm]  cb=ad
                                            [mm] \gdw (c,d)\sim [/mm] (a,b)
3.Transitivität: [mm] (a,b)\sim [/mm] (c,d) und [mm] (c,d)\sim\underbrace{(e,f)}_{=z...f\not=0} \Rightarrow (a,b)\sim [/mm] (e,f)
                        1.ad=bc  [mm] |*f(\not=0) [/mm]
                        2.cf=de   [mm] |*b(\not=0) [/mm]
                   [mm] \Rightarrow [/mm] 1.adf=bcf
                      2.bcf=deb
                    [mm] \Rightarrow adf=deb|/d(\not=0) \Rightarrow [/mm]  af=eb  [mm] \Rightarrow (a,b)\sim [/mm] (e,f)
Das müsste logisch sein, oder?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]