matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesResiduen gerade/ungerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Residuen gerade/ungerade
Residuen gerade/ungerade < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Residuen gerade/ungerade: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:52 So 09.07.2017
Autor: Schobbi

Aufgabe
Sei f in [mm] \ID [/mm] holomorph bis auf isolierte Singularitäten. Zeige:

(i) Ist f gerade, d.h. f(-z)=f(z), dass gilt [mm] res_{z}f=-res_{-z}f [/mm] für alle [mm] z\in \ID; [/mm] insbesondere [mm] res_{0}f=0 [/mm]

(ii) Ist f ungerade, d.h. f(-z)=-f(z), dass gilt [mm] res_{z}f=res_{-z}f [/mm] für alle [mm] z\in \ID [/mm]

Moin zusammen, für (i) hab ich folgenden Beweis gestrickt, geht das so oder hat sich da der Fehlerteufel eingeschlichen?

Sei [mm] \gamma: t\in[0,2\pi] \to z+e^{it} [/mm] eine konkrete Parametrisierung und berachte zunächst
[mm] res_z(f)=\integral_{\gamma}^{}f(z)dz=\integral_{0}^{2\pi}f(z+e^{it})dz [/mm]
Benutzt man nun für [mm] res_{-z} [/mm] eine andere Parametrisierung z.B.:  [mm] \gamma: t\in[0,2\pi] \to -z-e^{it} [/mm] so erhält man:

[mm] res_{-z}(f) [/mm]
[mm] =\integral_{\gamma}^{}f(z)dz [/mm]
[mm] =\integral_{0}^{2\pi}f(-z-e^{it})*-ie^{it}dz [/mm]
[mm] =\integral_{0}^{2\pi}f(z+e^{it})*-ie^{it}dz, [/mm] da f gerade
[mm] =-\integral_{0}^{2\pi}f(z+e^{it})*ie^{it}dz [/mm]
[mm] =-res_z(f) [/mm]


Für (ii) würde ich den Beweis bis zu dieser Stelle völlig analog machen ..... [mm] =\integral_{0}^{2\pi}-f(z+e^{it})*-ie^{it}dz, [/mm] da f ungerade
[mm] =\integral_{0}^{2\pi}f(z+e^{it})*ie^{it}dz [/mm]
[mm] =res_z(f) [/mm]


Kann ich das so machen? LG und einen sonnigen Nachmittag

        
Bezug
Residuen gerade/ungerade: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 So 09.07.2017
Autor: HJKweseleit


> Sei f in [mm]\ID[/mm] holomorph bis auf isolierte Singularitäten.
> Zeige:
>  
> (i) Ist f gerade, d.h. f(-z)=f(z), dass gilt
> [mm]res_{z}f=-res_{-z}f[/mm] für alle [mm]z\in \ID;[/mm] insbesondere
> [mm]res_{0}f=0[/mm]
>  
> (ii) Ist f ungerade, d.h. f(-z)=-f(z), dass gilt
> [mm]res_{z}f=res_{-z}f[/mm] für alle [mm]z\in \ID[/mm]
>  Moin zusammen, für
> (i) hab ich folgenden Beweis gestrickt, geht das so oder
> hat sich da der Fehlerteufel eingeschlichen?
>  
> Sei [mm]\gamma: t\in[0,2\pi] \to z+e^{it}[/mm] eine konkrete
> Parametrisierung und berachte zunächst
>  
> [mm]res_z(f)=\integral_{\gamma}^{}f(z)dz=\integral_{0}^{2\pi}f(z+e^{it})dz[/mm]

So kannst du das nicht schreiben: links bei [mm] res_z(f) [/mm] ist z ein fester Punkt, im Integral aber eine Variable, die um diesen Punkt kreisen soll, und im letzten Integral muss es auch dt statt dz heißen.

Besser:

[mm]res_z(f)=\integral_{\gamma}^{}f(p)dp=\integral_{0}^{2\pi}f(z+e^{it})dt[/mm]




>  Benutzt man nun für [mm]res_{-z}[/mm] eine andere Parametrisierung
> z.B.:  [mm]\gamma: t\in[0,2\pi] \to -z-e^{it}[/mm] so erhält man:
>  
> [mm]res_{-z}(f)[/mm]
>  [mm]=\integral_{\gamma}^{}f(z)dz[/mm]
>  [mm]=\integral_{0}^{2\pi}f(-z-e^{it})*-ie^{it}dz[/mm]
>  [mm]=\integral_{0}^{2\pi}f(z+e^{it})*-ie^{it}dz,[/mm] da f gerade
>  [mm]=-\integral_{0}^{2\pi}f(z+e^{it})*ie^{it}dz[/mm]
>  [mm]=-res_z(f)[/mm]


Die letzte Gleichheit besteht sicherlich nicht, denn du hast - anders als beim Integral von [mm] res_z(f) [/mm] - einen Zusatzfaktor [mm] ie^{it}. [/mm]



>  
>
> Für (ii) würde ich den Beweis bis zu dieser Stelle
> völlig analog machen .....
> [mm]=\integral_{0}^{2\pi}-f(z+e^{it})*-ie^{it}dz,[/mm] da f
> ungerade
>  [mm]=\integral_{0}^{2\pi}f(z+e^{it})*ie^{it}dz[/mm]
>  [mm]=res_z(f)[/mm]
>  
>
> Kann ich das so machen? LG und einen sonnigen Nachmittag


Vielleicht kommst du so weiter:

[mm]res_{-z}(f)=\integral_{0}^{2\pi}f(-z+e^{it})dt[/mm]

[mm] \alpha:=t-\pi [/mm]  mit [mm] d\alpha [/mm] = dt:

...= [mm]\integral_{-\pi}^{\pi}f(-z+e^{i\alpha + i\pi})d\alpha[/mm]= [mm]\integral_{-\pi}^{\pi}f(-z+e^{i\alpha}*e^{ i\pi})d\alpha[/mm]= [mm]\integral_{-\pi}^{\pi}f(-z+e^{i\alpha}*(-1))d\alpha[/mm]=[mm]\integral_{-\pi}^{\pi}f(-z-e^{i\alpha})d\alpha[/mm]=...


Bezug
        
Bezug
Residuen gerade/ungerade: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Mo 10.07.2017
Autor: fred97

Hallo Schobbi, hallo HJKWeseleit,

ist $ [mm] \gamma: t\in[0,2\pi] \to z+e^{it} [/mm] $, so ist


$ [mm] res_z(f)=\integral_{\gamma}^{}f(z)dz=\integral_{0}^{2\pi}f(\gamma(t))\gamma'(t)dt=\integral_{0}^{2\pi}f(z+e^{it})ie^{it}dt [/mm] $



Bezug
                
Bezug
Residuen gerade/ungerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:44 Mo 10.07.2017
Autor: HJKweseleit

Danke Fred! Habe gepennt, hätte ich merken müssen, kam nämlich selber beim letzten Schritt nicht weiter. Damit wird dann alles klar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]