Residuuensatz < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:08 So 12.04.2009 | Autor: | kommabi |
Aufgabe | Berechnen Sie mit Hilfe des Residuensatzes:
[mm] \integral_{0}^{-\infty}{f(x) dx}
[/mm]
mit [mm] f(x)=\bruch{cos(x)}{(x^2+1)^{2}} [/mm] |
Hallo!
Also ich bekomme bei der Aufgabe pi/4 raus, aber mein Matheprogramm gibt das Ergebnis mit ungefähr 0,5.... an.
Zu meinen Schritten:
Wegen der Achsensymmetrie kann man das Intgral von [mm] -\infty bis+\infty [/mm] berechnen und durch 2 teilen.
Um den Residuensatz anzuwenden berechne ich die Pole der komplexen Funktion und komme auf: z1=i und z2=-i , wobei beides zweifache Pole sind.
Ich schließe den Halbkreis oben, wobei ich hier nicht weiß, wie ich bei beliebigen Funktionen berechnen kann, ob das Halbkreisintegral für R gegen [mm] \infty [/mm] gegen null geht. Jedenfalls interessiert mich dann auch nur das obere Residuum, das ich mit der Formel: [mm] Res_{z1}=\bruch{1}{(n-1)!}
[/mm]
* [mm] (g^{(n-1)}(z1)) [/mm] wobei n für den n-fachen Pol steht und g in diesem Fall für [mm] \bruch{1}{(z+i)^2}.
[/mm]
So bekomme ich für den Wert des Residuums -i/4 und mit der Residuuenformel für Integrale als Ergebnis pi/4.
Ich finde meinen Fehler einfach nicht, oder ist es ein Rundungsfehler von Derive?
Viele Grüße und Danke für Hilfe!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo kommabi,
> Berechnen Sie mit Hilfe des Residuensatzes:
> [mm]\integral_{0}^{-\infty}{f(x) dx}[/mm]
>
> mit [mm]f(x)=\bruch{cos(x)}{(x^2+1)^{2}}[/mm]
> Hallo!
> Also ich bekomme bei der Aufgabe pi/4 raus, aber mein
> Matheprogramm gibt das Ergebnis mit ungefähr 0,5.... an.
> Zu meinen Schritten:
> Wegen der Achsensymmetrie kann man das Intgral von [mm]-\infty bis+\infty[/mm]
> berechnen und durch 2 teilen.
> Um den Residuensatz anzuwenden berechne ich die Pole der
> komplexen Funktion und komme auf: z1=i und z2=-i , wobei
> beides zweifache Pole sind.
> Ich schließe den Halbkreis oben, wobei ich hier nicht weiß,
> wie ich bei beliebigen Funktionen berechnen kann, ob das
> Halbkreisintegral für R gegen [mm]\infty[/mm] gegen null geht.
> Jedenfalls interessiert mich dann auch nur das obere
> Residuum, das ich mit der Formel:
> [mm]Res_{z1}=\bruch{1}{(n-1)!}[/mm]
> * [mm](g^{(n-1)}(z1))[/mm] wobei n für den n-fachen Pol steht und g
> in diesem Fall für [mm]\bruch{1}{(z+i)^2}.[/mm]
g ist hier [mm]g\left(z\right)=\bruch{\red{\cos\left(z\right)}}{\left(z+i\right)^{2}}[/mm]
> So bekomme ich für den Wert des Residuums -i/4 und mit der
> Residuuenformel für Integrale als Ergebnis pi/4.
> Ich finde meinen Fehler einfach nicht, oder ist es ein
> Rundungsfehler von Derive?
> Viele Grüße und Danke für Hilfe!
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruß
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:41 So 12.04.2009 | Autor: | kommabi |
Ach ich Idiot!
Danke Mathepower!
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:33 Mo 13.04.2009 | Autor: | kommabi |
Hmm, irgendwie krieg ich jetzt immer genau die Hälfte raus, von dem was eigentlich rauskommen soll. Ist es so, dass zweifache Polstellen in dem Summe der Residuen doppelt gezählt werden müssen?
Für das Residuum erhalte ich jetzt jedenfalls [mm] \bruch{1}{4*e*i}.
[/mm]
Durch die Integralformel erhalte ich: [mm] \integral_{0}^{\infty}{f(x) dx}=\pi*i*\bruch{1}{4*e*i}=\bruch{\pi}{4e}
[/mm]
Es soll aber das Doppelte rauskommen.
Danke nochmal für Hinweise!
|
|
|
|
|
[mm]g(z) = \frac{\operatorname{e}^{\operatorname{i}z}}{(z + \operatorname{i})^2} \, , \ \ \ g'(z) = \frac{\operatorname{e}^{\operatorname{i}z} (\operatorname{i}z - 3)}{(z + \operatorname{i})^3} \, , \ \ \ g'(\operatorname{i}) = \frac{1}{2 \operatorname{i} \operatorname{e}}[/mm]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:36 Mo 13.04.2009 | Autor: | kommabi |
Hallo Leopold! Danke für die Anwort!
Deine Rechnung habe ich nachgerechnet und komme auf dasselbe. Aber ich verstehe nicht, wieso du jetzt [mm] e^{iz} [/mm] im Zähler von g(z) stehen hast und nicht einfach cos(z), so wie Mathepower es bei mir berichtigt hat.
Viele Grüße!
|
|
|
|
|
Ich beziehe mich auf die Formel
[mm]\int_{- \infty}^{\infty} f(x) \operatorname{e}^{\operatorname{i}x}~\mathrm{d}x \ = \ 2 \pi \operatorname{i} \, \sum \operatorname{Res} \left( f(z) \operatorname{e}^{\operatorname{i}z} \right)[/mm]
Hierbei ist [mm]f[/mm] eine auf der abgeschlossenen oberen Halbebene mit Ausnahme von höchstens endlich vielen Punkten holomorphe Funktion, die auf der reellen Achse keine singulären Stellen besitzt. Die Existenz des Integrals ist gesichert, sofern [mm]\int_{-\infty}^{\infty} \left| f(x) \right|~\mathrm{d}x[/mm] konvergiert. Zu summieren ist über die Residuen aller in der oberen Halbebene liegenden singulären Punkte.
Im konkreten Fall ist [mm]f(z) = \frac{1}{(1+z^2)^2}[/mm]. Der Übergang zum Realteil liefert den verdoppelten Wert für das gesuchte Integral.
|
|
|
|