Residuum < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei f(z) = [mm] \bruch{1}{z(sinz)^4} [/mm] , z [mm] \not= k\pi [/mm] (k [mm] \in \IZ)
[/mm]
Man bestimme Res(f,0) |
Habe mit den Residuen so meine liebe Mühe und Not und komme auch mit dieser Aufgabe nicht zurecht. Meine einzige Idee wäre es sin z durch Z - [mm] \bruch{Z^3}{3!} [/mm] + [mm] \bruch{Z^5}{5!} [/mm] ... auszudrücken. Aber wie mache ich dann weiter?
Vielen Dank für Eure Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Das mit der Potenzreihe ist die richtige Idee. Klammere im Nenner zunächst [mm]z[/mm] aus. Du erhältst
[mm]f(z) = \frac{1}{z^5} \cdot \frac{1}{\left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right)^4}[/mm]
Den zweiten Bruch mußt du jetzt in eine Potenzreihe entwickeln. Da nur gerade Potenzen vorkommen, kann man von vorneherein
[mm]a + b \, z^2 + c \, z^4 + \ldots[/mm]
dafür ansetzen. Dabei ist [mm]c[/mm] das gesuchte Residuum, denn mit dem Faktor [mm]\frac{1}{z^5}[/mm] davor liefert die vierte Potenz den Beitrag [mm]c \, z^{-1}[/mm].
Zunächst ist die vierte Potenz der Klammer zu berechnen:
[mm]\left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right)^4 = 1 - \frac{2}{3} \, z^2 + \frac{1}{5} \, z^4 + \ldots[/mm]
Darauf kommt man, indem man die Klammern nach dem Distributivgesetz "jeder mit jedem" ausmultipliziert. Man muß dabei nur Potenzen berücksichtigen, die auch relevante Beiträge liefern:
[mm]\left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right) \cdot \left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right) \cdot \left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right) \cdot \left( 1 - \frac{z^2}{6} + \frac{z^4}{120} \mp \ldots \right)[/mm]
Das konstante Glied entsteht durch [mm]1 \cdot 1 \cdot 1 \cdot 1[/mm]. Das quadratische Glied entsteht, wenn drei konstante Glieder aus jeweils einer Klammer auf ein quadratisches treffen:
[mm]1 \cdot 1 \cdot 1 \cdot \left( - \frac{1}{6} \, z^2 \right) + 1 \cdot 1 \cdot \left( - \frac{1}{6} \, z^2 \right) \cdot 1 + 1 \cdot \left( - \frac{1}{6} \, z^2 \right) \cdot 1 \cdot 1 + \left( - \frac{1}{6} \, z^2 \right) \cdot 1 \cdot 1 \cdot 1 = - \frac{2}{3} \, z^2[/mm]
Bei der vierten Potenz ist es jetzt eine Idee schwerer. Überlege selbst, wie man auf [mm]\frac{1}{5} \, z^4[/mm] kommt. Letztlich spielt da ein bißchen elementare Kombinatorik eine Rolle.
Im nächsten Schritt hat man jetzt den Kehrwert der Potenzreihe zu bilden. Am besten fängst du so an:
[mm]\left(1 - \frac{2}{3} \, z^2 + \frac{1}{5} \, z^4 + \ldots \right) \cdot \left(a + b \, z^2 + c \, z^4 + \ldots \right) = 1[/mm]
Links mußt du wieder wie beschrieben ausmultiplizieren. Das liefert dir durch Vergleich mit der rechten Seite (dort kommt nur das konstante Glied 1 vor, alle anderen Koeffizienten sind 0) Bedingungen für [mm]a,b,c[/mm], welche du dann nach und nach berechnen kannst. Ich habe (ohne Gewähr) [mm]a = 1 \, , \ b = \frac{2}{3} \, , \ c = \frac{11}{45}[/mm] erhalten.
|
|
|
|