matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesResolventenmenge und Spektrum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Resolventenmenge und Spektrum
Resolventenmenge und Spektrum < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Resolventenmenge und Spektrum: Hilfe beim Beweis
Status: (Frage) beantwortet Status 
Datum: 13:36 So 23.03.2008
Autor: Docy

Aufgabe
Zeigen Sie, dass die Resolventenmenge [mm] \phi(A)=\{\lambda\in X| (\lambda*I-A)^{-1} ex. und ist stetig \} [/mm] offen ist, und dass [mm] \sigma(A)= \IC\backslash\phi(A) [/mm] kompakt ist.

Hallo,
ich brauche hier den Beweis für eine Prüfung, aber ich komme da irgendwie nicht drauf, kann mir hier bitte jemand helfen?

Gruß Docy

        
Bezug
Resolventenmenge und Spektrum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Mo 24.03.2008
Autor: ullim

Hi,

sei [mm] F_\lambda=(\lambda{I}-A)^{-1}. [/mm] Da [mm] F_\lambda [/mm] stetig ist kann man [mm] \lambda_0 [/mm] so wählen, dass gilt

[mm] \parallel F_\lambda [/mm] - [mm] F_{\lambda_0} \parallel<\parallel F_\lambda^{-1} \parallel^{-1} [/mm]

Da [mm] (\summe_{n=1}^{\infty}(F_\lambda^{-1}(F_\lambda-F_{\lambda_0}))^n)F_\lambda^{-1} [/mm] konvergent ist wegen,

[mm] \parallel F_\lambda^{-1}(F_\lambda-F_{\lambda_0}) \parallel\le\parallel F_\lambda^{-1} \parallel*\parallel F_\lambda-F_{\lambda_0} \parallel<1 [/mm] s. Steigkeit, folgt

[mm] (\summe_{n=1}^{\infty}(F_\lambda^{-1}(F_\lambda-F_{\lambda_0}))^n)F_\lambda^{-1}=\bruch{1}{1-F_\lambda^{-1}(F_\lambda-F_{\lambda_0})}F_\lambda^{-1}=F_{\lambda_0}^{-1} [/mm] s. geometrische Reihe.

Also existiert [mm] F_{\lambda_0} [/mm] und ist nach Konstruktion auch stetig also ist die Resolventenmenge offen. Das Komplement ist abgeschlossen und das es nur endlich viele Eigenwerte gibt auch kompakt.

mfg ullim





Bezug
                
Bezug
Resolventenmenge und Spektrum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Mo 24.03.2008
Autor: Docy

Hallo,
> Hi,
>  
> sei [mm]F_\lambda=(\lambda{I}-A)^{-1}.[/mm] Da [mm]F_\lambda[/mm] stetig ist
> kann man [mm]\lambda_0[/mm] so wählen, dass gilt
>  
> [mm]\parallel F_\lambda[/mm] - [mm]F_{\lambda_0} \parallel<\parallel F_\lambda^{-1} \parallel^{-1}[/mm]

warum kann man das hier so wählen???

> Da
> [mm](\summe_{n=1}^{\infty}(F_\lambda^{-1}(F_\lambda-F_{\lambda_0}))^n)F_\lambda^{-1}[/mm]
> konvergent ist wegen,
>  
> [mm]\parallel F_\lambda^{-1}(F_\lambda-F_{\lambda_0}) \parallel\le\parallel F_\lambda^{-1} \parallel*\parallel F_\lambda-F_{\lambda_0} \parallel<1[/mm]
> s. Steigkeit, folgt
>  
> [mm](\summe_{n=1}^{\infty}(F_\lambda^{-1}(F_\lambda-F_{\lambda_0}))^n)F_\lambda^{-1}=\bruch{1}{1-F_\lambda^{-1}(F_\lambda-F_{\lambda_0})}F_\lambda^{-1}=F_{\lambda_0}^{-1}[/mm]
> s. geometrische Reihe.

Warum ist das [mm] \bruch{1}{1-F_\lambda^{-1}(F_\lambda-F_{\lambda_0})}F_\lambda^{-1}=F_{\lambda_0}^{-1} [/mm] ???

>  
> Also existiert [mm]F_{\lambda_0}[/mm] und ist nach Konstruktion auch
> stetig also ist die Resolventenmenge offen. Das Komplement
> ist abgeschlossen und das es nur endlich viele Eigenwerte
> gibt auch kompakt.
>  

Wäre super, wenn du mir das noch erklären könntest.
Gruß Dimitrij


Bezug
                        
Bezug
Resolventenmenge und Spektrum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 Mo 24.03.2008
Autor: ullim

Hi,

> Hallo,
>  > Hi,

>  >  
> > sei [mm]F_\lambda=(\lambda{I}-A)^{-1}.[/mm] Da [mm]F_\lambda[/mm] stetig ist
> > kann man [mm]\lambda_0[/mm] so wählen, dass gilt
>  >  
> > [mm]\parallel F_\lambda[/mm] - [mm]F_{\lambda_0} \parallel<\parallel F_\lambda^{-1} \parallel^{-1}[/mm]
>  
> warum kann man das hier so wählen???

Damit es später passt.

>  > Da

> >
> [mm](\summe_{n=1}^{\infty}(F_\lambda^{-1}(F_\lambda-F_{\lambda_0}))^n)F_\lambda^{-1}[/mm]
> > konvergent ist wegen,
>  >  
> > [mm]\parallel F_\lambda^{-1}(F_\lambda-F_{\lambda_0}) \parallel\le\parallel F_\lambda^{-1} \parallel*\parallel F_\lambda-F_{\lambda_0} \parallel<1[/mm]
> > s. Steigkeit, folgt
>  >  
> >
> [mm](\summe_{n=1}^{\infty}(F_\lambda^{-1}(F_\lambda-F_{\lambda_0}))^n)F_\lambda^{-1}=\bruch{1}{1-F_\lambda^{-1}(F_\lambda-F_{\lambda_0})}F_\lambda^{-1}=F_{\lambda_0}^{-1}[/mm]
> > s. geometrische Reihe.
>  
> Warum ist das
> [mm]\bruch{1}{1-F_\lambda^{-1}(F_\lambda-F_{\lambda_0})}F_\lambda^{-1}=F_{\lambda_0}^{-1}[/mm]
> ???
>  >  

Einfach ausmultiplizieren.

Der Nenner ergibt

[mm] 1-F_\lambda^{-1}(F_\lambda-F_{\lambda_0})=1-F_\lambda^{-1}*F_\lambda+F_\lambda^{-1}*F_{\lambda_0}=F_\lambda^{-1}*F_{\lambda_0} [/mm]

Daraus folgt der Rest.

> > Also existiert [mm]F_{\lambda_0}[/mm] und ist nach Konstruktion auch
> > stetig also ist die Resolventenmenge offen. Das Komplement
> > ist abgeschlossen und das es nur endlich viele Eigenwerte
> > gibt auch kompakt.
>  >  
> Wäre super, wenn du mir das noch erklären könntest.
>  Gruß Dimitrij
>  

mfg ullim


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]