matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieReziprozitätsgesetz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Reziprozitätsgesetz
Reziprozitätsgesetz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reziprozitätsgesetz: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:22 Sa 07.07.2012
Autor: fagottator

Aufgabe
Seien [mm] $r,s,1_1,...,r_m \in \IZ$ [/mm] ungerade. Dann gelten folgende Kongruenzen $mod 2$:
1) [mm] $\bruch{rs - 1}{2} \equiv \bruch{r-1}{2} [/mm] + [mm] \bruch{s-1}{2}$ [/mm] bzw. [mm] $\bruch{r_1 \cdot r_2 \cdot ... \cdot r_m - 1}{2}$ \equiv \summe_{i=1}^{m} \bruch{r_i - 1}{2} [/mm]
2) [mm] $\bruch{r^2s^2 - 1}{8} \equiv \bruch{r^2-1}{8} [/mm] + [mm] \bruch{s^2-1}{8}$ [/mm] bzw. [mm] $\bruch{r_1^2 \cdot r_2^2 \cdot ... \cdot r_m^2 - 1}{8}$ \equiv \summe_{i=1}^{m} \bruch{r_i^2 - 1}{8} [/mm]

Hallo zusammen,

ich habe in einem Buch den Beweis für das Reziprozitätsgesetz für Jacobi-Symbole nachgeschlagen und dort wird mit den obigen Hilfssätzen gearbeitet. Das diese zur Lösung des Beweises helfen ist mir schon einsichtig, allerdings verstehe ich den im Buch angegebene Beweis für diese Hilfssätze nicht:

1) folgt aus: $(r-1)(s-1) [mm] \equiv [/mm] 0 \ mod \ 4 [mm] \Rightarrow [/mm] rs-1 [mm] \equiv [/mm] (r-1) + (s-1) \ mod \ 4$

2) folgt aus: [mm] $r^2 [/mm] -1 [mm] \equiv s^2-1 \equiv [/mm] 0 \ mod \ 4 [mm] \Rightarrow (r^2 [/mm] - [mm] 1)(s^2 [/mm] - 1) [mm] \equiv [/mm] 0 \ mod \ 16 [mm] \Rightarrow r^2s^2 [/mm] - 1 [mm] \equiv (r^2 [/mm] - 1) + [mm] (s^2 [/mm] - 1) \ mod \ 16$

Kann mir jemand vllt mit einem Ansatz oder so helfen? Ich versteh leider wirklich nicht, wie es zu dem obigen Beweis kommt... *schäm*

LG und schonmal vielen Dank

fagottator

        
Bezug
Reziprozitätsgesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Sa 07.07.2012
Autor: Schadowmaster

moin,

Der Beweis ist etwas sehr kurz geraten, ja.
Du kannst das aber sicher ohne größere Probleme selbst kurz beweisen (ist auch gut zum Behalten und fürs Verständnis^^).
Für die Brüche mit $r,s$ solltest du dir $s$ und $r$ jeweils modulo $4$ angucken und dann überprüfen, was modulo 2 mit den Brüchen geschieht.
Da beide ungerade sind gibt es nur je zwei Möglichkeiten, also insgesamt vier Fälle abzuarbeiten.

Für die Summen würde sich eine kleine Induktion nach $m$ anbieten, wobei der Induktionsanfang gerade die erste Gleichung mit $r,s$ ist.

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]