matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRichtungsableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Richtungsableitung
Richtungsableitung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Mo 18.06.2012
Autor: doom0852

Aufgabe
Ich verkürze die Aufgabe auf folgenden Inhalt: ich habe bereits die Ableitung der Verkettung der Funktionen g und f berechnet, indem ich die Jacobi Matrizen von g und f berechnet habe und dann Kettenregel angewandt habe damit man die Ableitung von g verkettet mit f erhält. Heraus kommt eine einzeilige Matrix:

[mm] \pmat{ 1+y*cos(1+y^5) & x*cos(1+y^5) & -2*y^6*x*sin(1+y^5) } [/mm]

mit [mm] f(x,y)=(x,xy,y^3) [/mm]    
[mm] g(x_1,x_2,x_3)= x_1+x_2*cos(1+x_3^2) [/mm]

Wie berechne ich die Richtungsableitung entlang eines Vektors [mm] 1/5*\vektor{3 \\ 4} [/mm] ?
Kann ich nich einfach den Vektor dranmultiplizieren an die Ableitung? Wenn ja, von welcher Seite?

        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Di 19.06.2012
Autor: MathePower

Hallo doom0852,

> Ich verkürze die Aufgabe auf folgenden Inhalt: ich habe
> bereits die Ableitung der Verkettung der Funktionen g und f
> berechnet, indem ich die Jacobi Matrizen von g und f
> berechnet habe und dann Kettenregel angewandt habe damit
> man die Ableitung von g verkettet mit f erhält. Heraus
> kommt eine einzeilige Matrix:
>  
> [mm]\pmat{ 1+y*cos(1+y^5) & x*cos(1+y^5) & -2*y^6*x*sin(1+y^5) }[/mm]
>  


Die Matrix hat eine Zeile und 2 Spalten, da [mm]f: \IR^{2} \to \IR^{3}, \ g:\IR^{3}\to \IR[/mm].

Demnach geht die Verkettung [mm]g \circ f: \IR^{2} \to \IR[/mm].


> mit [mm]f(x,y)=(x,xy,y^3)[/mm]    
> [mm]g(x_1,x_2,x_3)= x_1+x_2*cos(1+x_3^2)[/mm]
>  Wie berechne ich die
> Richtungsableitung entlang eines Vektors [mm]1/5*\vektor{3 \\ 4}[/mm]
> ?


Nach der Definition, siehe dazu []Richtungsableitung


>  Kann ich nich einfach den Vektor dranmultiplizieren an die
> Ableitung? Wenn ja, von welcher Seite?


Beim Standardskalarprodukt ist das egal, da dies symmetrisch ist.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]