matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRiemann-integrierbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Riemann-integrierbar
Riemann-integrierbar < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann-integrierbar: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:05 Di 20.10.2009
Autor: Sacha

Aufgabe
Zeige, dass [mm] f:\IR^n \to \IR [/mm] mit
     [mm] f(x)=\begin{cases} 1, & \mbox{falls } x\in [0,1] \cap \IQ \\ 0, & \mbox{sonst} \end{cases} [/mm]
Riemann-integrierbar ist.

Kann mir hier jemand einen Tipp geben, was ich genau zeigen muss damit man hinreichend sagen kann, dass diese Funkton Riemann.integrierbar ist? Danke für eure Hilfe!

        
Bezug
Riemann-integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Di 20.10.2009
Autor: MatthiasKr

Hallo,
> Zeige, dass [mm]f:\IR^n \to \IR[/mm] mit
>       [mm]f(x)=\begin{cases} 1, & \mbox{falls } x\in [0,1] \cap \IQ \\ 0, & \mbox{sonst} \end{cases}[/mm]
>  
> Riemann-integrierbar ist.
>  Kann mir hier jemand einen Tipp geben, was ich genau
> zeigen muss damit man hinreichend sagen kann, dass diese
> Funkton Riemann.integrierbar ist? Danke für eure Hilfe!

Hm, bist du dir sicher mit dieser aufgabenstellung? Diese Funktion - die sog. Dirichlet-Fkt. - ist allgemein als beispiel fuer eine NICHT riemann-integrierbare funktion bekannt.

gruss
Matthias

Bezug
                
Bezug
Riemann-integrierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Di 20.10.2009
Autor: Sacha

ohh mein fehler *megaschäm* klar das weiss ich habe da nur das NICHT vergessen '^^

Bezug
                        
Bezug
Riemann-integrierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 Di 20.10.2009
Autor: felixf

Hallo!

> ohh mein fehler *megaschäm* klar das weiss ich habe da nur
> das NICHT vergessen '^^

Ja, das ist wichtig ;-)

Zur Aufgabe selber: ueberleg dir mal, wie so eine Treppenfunktion aussieht die unter oder ueber der Funktion liegt. ueberlege dir, dass eine darueber immer [mm] $\ge [/mm] 1$ ist auf $[0, 1]$, und eine darunter immer [mm] $\le [/mm] 0$ ist auf $[0, 1]$. Damit unterscheiden sich Unter- und Oberintegral um 1.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]