matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRiemann Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Riemann Integral
Riemann Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:34 Di 31.05.2011
Autor: racy90

Hallo,

Wir haben in der Vorlesung [mm] \integral_{0}^{1}{xdx} [/mm] nach der Definition von Riemann das berechnet.Nur war die Erklärung nicht sehr gut.Könnt ihr mir vielleicht die Rechenschritte plausibel erklären? Ich habe leider keine Ahnung was da vor sich geht :/

[mm] \integral_{0}^{1}{xdx}=\summe_{i=0}^{n=1}\bruch{1}{n}*\bruch{i}{n}=\bruch{1}{n^2}\summe_{0}^{1}i=\bruch{1}{n^2}*\bruch{1}{2}(n-1)*n=\bruch{1}{2}*\bruch{n-1}{n}=\bruch{1}{2} [/mm]

        
Bezug
Riemann Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Di 31.05.2011
Autor: fred97


> Hallo,
>  
> Wir haben in der Vorlesung [mm]\integral_{0}^{1}{xdx}[/mm] nach der
> Definition von Riemann das berechnet.Nur war die Erklärung
> nicht sehr gut.Könnt ihr mir vielleicht die Rechenschritte
> plausibel erklären? Ich habe leider keine Ahnung was da
> vor sich geht :/
>  
> [mm]\integral_{0}^{1}{xdx}=\summe_{i=0}^{n=1}\bruch{1}{n}*\bruch{i}{n}=\bruch{1}{n^2}\summe_{0}^{1}i=\bruch{1}{n^2}*\bruch{1}{2}(n-1)*n=\bruch{1}{2}*\bruch{n-1}{n}=\bruch{1}{2}[/mm]
>  

Abschreiben ist eine hohe Kunst !!

Richtig lautet obiges:

[mm]\integral_{0}^{1}{xdx}=\limes_{n\rightarrow\infty}\summe_{i=0}^{n}\bruch{1}{n}*\bruch{i}{n}=\limes_{n\rightarrow\infty}\bruch{1}{n^2}\summe_{i=0}^{n}i=\limes_{n\rightarrow\infty}\bruch{1}{n^2}*\bruch{1}{2}(n+1)*n=\limes_{n\rightarrow\infty}\bruch{1}{2}*\bruch{n+1}{n}=\bruch{1}{2}[/mm]

Für n [mm] \in \IN [/mm] sei [mm] $Z_n:=(0,\bruch{1}{n}, \bruch{2}{n},..., \bruch{n}{n})$ [/mm] die äquidistante Zerlegung von [0,1] in n+1 Teilpunkte.

Mit f(x)=x ist dann

               [mm] $S_n:= \summe_{i=0}^{n}\bruch{1}{n}*\bruch{i}{n}= \summe_{i=0}^{n}\bruch{1}{n}*f(\bruch{i}{n})$ [/mm]

eine zugehörige Riemannsche Zwischensumme und es gilt:

             [mm] $\integral_{0}^{1}{xdx}= \limes_{n\rightarrow\infty}S_n=1/2$ [/mm]

FRED

              

              

Bezug
                
Bezug
Riemann Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:58 Di 31.05.2011
Autor: racy90

[mm] \limes_{n\rightarrow\infty}\summe_{i=0}^{n}\bruch{1}{n}\cdot{}\bruch{i}{n} [/mm]  sind das die Breiten und Höhen?

Bezug
                        
Bezug
Riemann Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Di 31.05.2011
Autor: schachuzipus

Hallo racy90,


>
> [mm]\limes_{n\rightarrow\infty}\summe_{i=0}^{n}\bruch{1}{n}\cdot{}\bruch{i}{n}[/mm]
>  sind das die Breiten und Höhen?

Ja, das was in der Summe steht, ist der Flächeninhalt eines Rechtecks mit Breite [mm] $\frac{1}{n}$ [/mm] und Höhe [mm] $\frac{i}{n}$ [/mm]

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]