matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisRiemann stieltjes &Wegintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Riemann stieltjes &Wegintegral
Riemann stieltjes &Wegintegral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann stieltjes &Wegintegral: 2 Aufgaben
Status: (Frage) beantwortet Status 
Datum: 13:36 Mi 15.12.2004
Autor: Johann.S

Hallo , ich habe zwei Fragen zu Aufgaben,
in der ersten geht es um ein wegintegral:
[mm] \integral_{ \gamma} {(x^2+y) dx+(x-y^2)dy} [/mm]
Mit dem Weg [mm] y=e^x \varepsilon[0,1] [/mm]
Allgemein gilt doch:
[mm] \integral_{a}^{b} [/mm] {f(x(t))*x'(t) dt}
also habe ich erstmal
für x und y die parametrisierung X=t und [mm] y=e^t [/mm] eingesetzt und die ableitungen  gebildet ich bekam dann:
[mm] \integral_{0}^{1} {(t^2+e^t)*2t+(t-e^2t)*2e^2t dt} [/mm]

Ist das so richtig?
Muss ich jetzt nur noch das Integral lösen?

Dann hab ich noch eine weitere Frage und zwar geht es um ein Riemann- Stieltjes Integral, in meinem Falle:
[mm] \integral_{0}^{pi} {e^x dsin(x)} [/mm]
Wie geht man an sowas rann kann mir das jemand an einem einfachen Beispiel zeigen, wie man ein stieltjes integral lößt

        
Bezug
Riemann stieltjes &Wegintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Fr 17.12.2004
Autor: Julius

Hallo Johann!

> Hallo , ich habe zwei Fragen zu Aufgaben,
> in der ersten geht es um ein wegintegral:
>   [mm]\integral_{ \gamma} {(x^2+y) dx+(x-y^2)dy} [/mm]
>  Mit dem Weg
> [mm]y=e^x \varepsilon[0,1] [/mm]
>  Allgemein gilt doch:
>   [mm]\integral_{a}^{b}[/mm] {f(x(t))*x'(t) dt}
>  also habe ich erstmal
>  für x und y die parametrisierung X=t und [mm]y=e^t[/mm] eingesetzt
> und die ableitungen  gebildet ich bekam dann:
>   [mm]\integral_{0}^{1} {(t^2+e^t)*2t+(t-e^2t)*2e^2t dt} [/mm]

Wo kommen denn die ganzen $2$en her? Das ist mir völlig unklar. Kannst du mir das mal erklären?

Ich hätte einfach

[mm]\integral_{0}^{1} {(t^2+e^t) +(t-e^2t)*e^t dt}[/mm]

als Ergebnis.

> Dann hab ich noch eine weitere Frage und zwar geht es um
> ein Riemann- Stieltjes Integral, in meinem Falle:
>   [mm]\integral_{0}^{pi} {e^x dsin(x)} [/mm]
>  Wie geht man an sowas
> rann kann mir das jemand an einem einfachen Beispiel
> zeigen, wie man ein stieltjes integral lößt

Wenn der Integrator [mm] $\alpha(x)$ [/mm] differenzierbar und [mm] $\alpha'$ [/mm] Riemann-integrierbar über $[a,b]$ ist, dann gilt allgemein

[mm] $\int\limits_a^b [/mm] f(x) [mm] d(\alpha(x)) [/mm] = [mm] \int\limits_a^b [/mm] f(x) [mm] \alpha'(x)\, [/mm] dx$,

hier also:

[mm] $\int\limits_0^{\pi} e^x d(\sin(x)) [/mm] = [mm] \int\limits_0^{\pi} e^x \cos(x)\, [/mm] dx$.

Viele Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]