matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperRing
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Ring
Ring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ring: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 09.11.2013
Autor: Thenotebook

Aufgabe
Sei R ein kommutativer Ring mit [mm] 1\ne0. [/mm] Es bezeichne [mm] R^\ IN_0 [/mm] die Menge der Abbildungen von [mm] \IN_0 [/mm] nach R. Für f, [mm] g\in\R^\ IN_0 [/mm] seien die Abbildungen f+g und f [mm] \cdot [/mm] g [mm] \in\R^\ IN_0 [/mm] durch

f+g: [mm] n\mapsto [/mm] f(n) + g(n)

sowie f [mm] \cdot [/mm] g: n [mm] \rightarrow \summe_{i=0}^{n} [/mm] f(i)g(n-i)

für [mm] n\in\IN_0 [/mm] definiert. Zeigen oder widerlegen Sie:

a) [mm] (R^\ IN_0, [/mm] +, [mm] \cdot) [/mm] ist ein Ring.
b) [mm] (R^\ IN_0, [/mm] +, [mm] \cdot) [/mm] ist ein kommutativer Ring.


zu a)
Ich muss also zeigen, dass gilt:
(R^ [mm] \IN_0, [/mm] +) ist abelsche Gruppe:
- Assoziativität: (a+b)+c = a+(b+c)
- Kommutativität: a+b = b+a
- Es gibt Neutrales Element: 0+a=a+0=0
- Es gibt Inverse Elemente: a+(-a)=0

(R^ [mm] \IN0, \cdot) [/mm] ist Halbgruppe:
- Assoziativität: a*(b*c) = (a*b)*c
und
- Distributivität: (a+b)*c = a*b + a*c
zu b)
Ich muss zeigen:
Kommutativität: a*b = b*a

Mein Problem ist, dass ich mir das nicht wirklich vorstellen kann.
:-(



Nur für Erst-Poster
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Sa 09.11.2013
Autor: angela.h.b.


> Sei R ein kommutativer Ring mit [mm]1\ne0.[/mm] Es bezeichne [mm]R^\ IN_0[/mm]
> die Menge der Abbildungen von [mm]\IN_0[/mm] nach R. Für f,
> [mm]g\in\R^\ IN_0[/mm] seien die Abbildungen f+g und f [mm]\cdot[/mm] g
> [mm]\in\R^\ IN_0[/mm] durch

>

> f+g: [mm]n\mapsto[/mm] f(n) + g(n)

>

> sowie f [mm]\cdot[/mm] g: n [mm]\rightarrow \summe_{i=0}^{n}[/mm] f(i)g(n-i)

>

> für [mm]n\in\IN_0[/mm] definiert. Zeigen oder widerlegen Sie:

>

> a) [mm](R^\ IN_0,[/mm] +, [mm]\cdot)[/mm] ist ein Ring.
> b) [mm](R^\ IN_0,[/mm] +, [mm]\cdot)[/mm] ist ein kommutativer Ring.

>

> zu a)
> Ich muss also zeigen, dass gilt:
> (R^ [mm]\IN_0,[/mm] +) ist abelsche Gruppe:
> - Assoziativität: (a+b)+c = a+(b+c)
> - Kommutativität: a+b = b+a
> - Es gibt Neutrales Element: 0+a=a+0=0
> - Es gibt Inverse Elemente: a+(-a)=0

>

> (R^ [mm]\IN0, \cdot)[/mm] ist Halbgruppe:
> - Assoziativität: a*(b*c) = (a*b)*c
> und
> - Distributivität: (a+b)*c = a*b + a*c
> zu b)
> Ich muss zeigen:
> Kommutativität: a*b = b*a

>

> Mein Problem ist, dass ich mir das nicht wirklich
> vorstellen kann.
> :-(

Hallo,

[willkommenmr].

Beim Aufschreiben der Gruppenaxiome hast Du ganz wichtige Dinge vergessen:

> zu a)
> Ich muss also zeigen, dass gilt:
> (R^ +) ist abelsche Gruppe:
> - Assoziativität:

Für alle [mm] a,b,c\in \IR^{\IN_0} [/mm] gilt:

> (a+b)+c = a+(b+c)

> - Kommutativität:

Für alle a,b [mm] \in \IR^{\IN_0} [/mm] gilt
>a+b = b+a

> - Es gibt Neutrales Element [mm] \red{0\in \IR^{\IN_0}}, [/mm]

so daß
für alle [mm] a\in \IR^{\IN_0} [/mm] gilt:

> 0+a=a+0=0a
> - Es gibt Inverse Elemente:

Zu jedem [mm] a\in \IR^{\IN_0} [/mm] gibt es ein inverses Element [mm] (-a)\in\IR^{\IN_0} [/mm]

> a+(-a)=0

Und für die Halbgruppe dann entsprechend, das kannst Du selbst ergänzen.

>

> (R^ ist Halbgruppe:
> - Assoziativität: a*(b*c) = (a*b)*c
> und
> - Distributivität: (a+b)*c = a*b + a*c
> zu b)
> Ich muss zeigen:
> Kommutativität: a*b = b*a

Ich mache Dir jetzt mal den Beweis für die Assoziativität bzgl. + vor.
Zutat: 3 beliebige Elemente aus der Menge [mm] \IR^{\IN_0}, [/mm] also 3 Funktionen.

- Assoziativität:
zu zeigen:
Für alle Funktionen [mm] f,g,h\in \IR^{\IN_0} [/mm] gilt:
(f+g)+h=f+(g+h)


Beweis: Seien [mm] f,g,h\in \IR^{\IN_0}. [/mm]

[Aufgepaßt:
(f+g)+h ist eine Funktion.
f+(g+h) ist eine Funktion.
Wir wollen also die Gleichheit zweier Funktionen zeigen.
Wann sind zwei Funktionen gleich? Wenn ihre Werte auf dem ganzen Definitionsbereich übereinstimmen.
Höhepunkt: zu zeigen ist also, daß für jedes [mm] n\in \IN_0 [/mm] gilt
((f+g)+h)(n)=(f+(g+h) )(n).
Jetzt geht's los.]

Sei [mm] n\in \IN_0. [/mm]

Es ist

((f+g)+h)(n)= (f+g)(n)+h(n) [mm] \qquad [/mm] denn...
=(f(n)+g(n))+h(n) [mm] \qquad [/mm] denn...
= [mm] f(n)+(g(n)+h(n))\qquad [/mm] denn f(n), g(n),h(n) sind reelle Zahlen
=f(n)+(g+h)(n) [mm] \qquad [/mm] denn...
[mm] =(f+(g+h))(n)\qquad [/mm] denn...

Es ist für alle [mm] n\in \IN_0 [/mm]
((f+g)+h)(n)=(f+(g+h))(n),
also ist
(f+g)+h=f+(g+h).

Die Kommutativität bekommst Du jetzt sicher hin.

Zum neutralen Element
zu zeigen:
es gibt eine Funktion [mm] f_0\in \IR^{\IN_0}, [/mm] so daß für alle Funktionen [mm] f\in \IR^{\IN_0} [/mm] gilt
[mm] f+f_0=f_0+f=f. [/mm]

Beweis: [überlege Dir, welche Funktion man zu jeder anderen addieren kann, ohne daß sich etwas ändert.
Schreibe ihre Funktionsgleichung hin]
Es sei [mm] f_0:\IN_>0\to \IR [/mm] mit
[mm] f_0(n):=... [/mm] für alle [mm] n\in \IN_0. [/mm]

Und nun rechne vor, daß die von Dir definierte Funtion tut, as sie tun soll.


Tips zum inversen Element:
Zu zeigen:
zu jedem [mm] f\in \IR^{\IN_0} [/mm] gibt es eine passende Funktion [mm] \overline{f}\in \IR^{\IN_0} [/mm] mit
[mm] f+\overline{f}=\overline{f}+f=f_0. [/mm]

Beweis: sei [mm] f\in \IR^{\IN_0}. [/mm]
Definiere nun eine dazu passende Funktion [mm] \overline{f} [/mm] und rechne vor, daß sie tut, was sie soll.

Wenn Du das alles hast, kannst Du die Halbgruppe allein.

LG Angela






 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]