matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesRinge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Ringe
Ringe < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringe: Teilmengen
Status: (Frage) beantwortet Status 
Datum: 14:37 Do 20.10.2016
Autor: Franzi17

Aufgabe
Entscheiden Sie, ob die angegebene Teilmenge von Q zusammen mit der üblichen Addition, mit 0 als Nullelement, mit der üblichen Multiplikation und mit 1 als Einselement ein Ring ist. Begründen Sie Ihre Antwort!
(a) {a/5 : a ∈ IZ}
(b) {a/2n : a,n ∈ IZ}

Hallo,
wäre froh über einen Tipp, ist die Herangehensweise in Ordnung oder habe ich einen Fehler gemacht? Danke für die Hilfe!


a.) z.Z. 0, 1 Element von [mm] {\bruch{a}{5} ; a ∈ IZ} [/mm]
  

[mm] \bruch{a}{5} [/mm] = 0
für a = 0, 0  ∈ IZ
--> 0 ∈ [mm] {\bruch{a}{5}; a ∈ IZ} [/mm]

[mm] \bruch{a}{5} [/mm] = 1
für a = 5 , 5 ∈ IZ
--> 5 ∈ [mm] {\bruch{a}{5}; a ∈ IZ} [/mm]

z.Z.: m(a,b) ∈ [mm] {\bruch{a}{5}; a ∈ IZ} [/mm]

additiv: m(a,b) = a + b

[mm] \bruch{a}{5} [/mm] + [mm] \bruch{b}{5} [/mm] = [mm] \bruch{a + b}{5} [/mm] = [mm] \bruch{x}{5} [/mm]

a  +  b sei x, x ∈ IZ, da die Summe zweier ganzer Zahlen eine ganze Zahl ergibt.

multiplikativ: m(a,b) = ab

[mm] \bruch{a}{5} [/mm] * [mm] \bruch{b}{5} [/mm] = [mm] \bruch{ab}{25} [/mm]

multiplikativ m(a,b) nur ∈  [mm] {\bruch{a}{5}; a ∈ IZ}, [/mm] wenn ab durch 5 teilbar ist.

--> kein Ring

Bei b) ergibt sich eine ähnliche Situation.

        
Bezug
Ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Do 20.10.2016
Autor: angela.h.b.


> Entscheiden Sie, ob die angegebene Teilmenge von Q zusammen
> mit der üblichen Addition, mit 0 als Nullelement, mit der
> üblichen Multiplikation und mit 1 als Einselement ein Ring
> ist. Begründen Sie Ihre Antwort!
> (a) {a/5 : a ∈ IZ}
> (b) {a/2n : a,n ∈ IZ}
> Hallo,
> wäre froh über einen Tipp, ist die Herangehensweise in
> Ordnung oder habe ich einen Fehler gemacht? Danke für die
> Hilfe!

>
>

> a.) z.Z. 0, 1 Element von [mm]{\bruch{a}{5} ; a ∈ IZ}[/mm]

>
>

> [mm]\bruch{a}{5}[/mm] = 0
> für a = 0, 0 ∈ IZ
> --> 0 ∈ [mm]{\bruch{a}{5}; a ∈ IZ}[/mm]

>

> [mm]\bruch{a}{5}[/mm] = 1
> für a = 5 , 5 ∈ IZ
> --> 5 ∈ [mm]{\bruch{a}{5}; a ∈ IZ}[/mm]

>

> z.Z.: m(a,b) ∈ [mm]{\bruch{a}{5}; a ∈ IZ}[/mm]

>

> additiv: m(a,b) = a + b

>

> [mm]\bruch{a}{5}[/mm] + [mm]\bruch{b}{5}[/mm] = [mm]\bruch{a + b}{5}[/mm] =
> [mm]\bruch{x}{5}[/mm]

>

> a + b sei x, x ∈ IZ, da die Summe zweier ganzer Zahlen
> eine ganze Zahl ergibt.

>

> multiplikativ: m(a,b) = ab

>

> [mm]\bruch{a}{5}[/mm] * [mm]\bruch{b}{5}[/mm] = [mm]\bruch{ab}{25}[/mm]

>

> multiplikativ m(a,b) nur ∈ [mm]{\bruch{a}{5}; a ∈ IZ},[/mm]
> wenn ab durch 5 teilbar ist.

>

> --> kein Ring

Hallo,

Du hast richtig überlegt: es ist kein Ring.

Zum Zeigen dieser Tatsache kannst Du alles Gedöns, was Du auf dem Weg zu dieser Erkenntnis gemacht hast, weglassen, und einfach ein konkretes Zalenbeispiel angeben, an welchem man sieht, daß die Regeln eines Ringes nicht eingehalten werden.
Z.B. so:

Es sind [mm] \bruch{1}{5}, \bruch{3}{5}\in \{a/5 : a \in \IZ\}, [/mm]

jedoch ist [mm] \bruch{1}{5}*\bruch{3}{5}=\bruch{3}{25}=\bruch{0.6}{5}\not\in \{a/5 : a \in \IZ\}. [/mm]
Also ist die Menge kein Ring.

Merke: widerlegen immer mit einem Gegenbeispiel!

>

> Bei b) ergibt sich eine ähnliche Situation.

Ja?
Ich würde denken, daß es ein Ring ist - zumindest, wenn die Menge im Original so ist, daß n=0 ausgeschlossen ist. Sonst ist es ja eh Kokolores.

LG Angela

Bezug
                
Bezug
Ringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Do 20.10.2016
Autor: Franzi17

Hallo! Danke für die Antwort.
bei b) komme ich bei m(a,b) = ab
auf [mm] \bruch{a}{2^n} [/mm]  * [mm] \bruch{b}{2^n} [/mm] = [mm] \bruch{ab}{4^n} [/mm]
und wäre dann nicht m(a,b) nur Element {a/2n : a,n ∈Z} wenn ab durch 2 teilbar wäre?

Bezug
                        
Bezug
Ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Do 20.10.2016
Autor: angela.h.b.


> Hallo! Danke für die Antwort.
> bei b) komme ich bei m(a,b) = ab
> auf [mm]\bruch{a}{2^n}[/mm] * [mm]\bruch{b}{2^n}[/mm] = [mm]\bruch{ab}{4^n}[/mm]
> und wäre dann nicht m(a,b) nur Element {a/2n : a,n ∈Z}
> wenn ab durch 2 teilbar wäre?

Hallo,

oh, die Menge ist wohl ganz anders als von Dir gepostet.
Wohl so: [mm] \{\bruch{a}{2^n}: a,n\in \IZ\} [/mm] ?

Es ist doch

> [mm]\bruch{a}{2^n}[/mm] * [mm]\bruch{b}{2^n}[/mm] = [mm]\bruch{ab}{4^n}[/mm]

[mm] =\bruch{ab}{(2^2)^n}=\bruch{ab}{2^{2n}}. [/mm] Paßt.

Vor allem aber ist

[mm]\bruch{a}{2^n}[/mm] * [mm]\bruch{b}{2^m}[/mm] =[mm]\bruch{ab}{2^{n+m}}[/mm] . Paßt.

LG Angela
 

Bezug
                                
Bezug
Ringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Do 20.10.2016
Autor: Franzi17

Oh Entschuldigung für den Tippfehler.
Ich stehe grad etwas auf dem Schlauch.
wenn es 2^(2n) ist, wieso ist es dann Element von [mm] a/(2^n)? [/mm]

Bezug
                                        
Bezug
Ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Do 20.10.2016
Autor: angela.h.b.


> Oh Entschuldigung für den Tippfehler.
> Ich stehe grad etwas auf dem Schlauch.
> wenn es 2^(2n) ist, wieso ist es dann Element von [mm]a/(2^n)?[/mm]

Es ist Element der Menge [mm] \{\bruch{a}{2^n}:a,n\in \IZ\}, [/mm]
weil in dieser Menge die Brüche sind, deren Zähler irgendeine ganze Zahl und deren Nenner irgendeine Zweierpotenz sind.

LG Angela

Bezug
                                                
Bezug
Ringe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Do 20.10.2016
Autor: Franzi17

Ok, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]