matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenRitz-Galerkin-Ansatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentialgleichungen" - Ritz-Galerkin-Ansatz
Ritz-Galerkin-Ansatz < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ritz-Galerkin-Ansatz: Überprüfen Anfang, hilfe weite
Status: (Frage) beantwortet Status 
Datum: 18:48 Mo 24.01.2011
Autor: Kinghenni

Aufgabe
Betrachten Sie für  [mm] \Omega [/mm] = (0,1) das RWP
[mm] \Delta [/mm] u = 0; in  [mm] \Omega [/mm]

u(0) = 1;
u(1) = 0
und bestimmen Sie die schwache Lösung entsprechend dem Ritz-Galerkin-Ansatz in dem Raum
P3 := [mm] {a_0 + a_1x + a_2x^2 + a_3x^3 | a_i \in \IR; i = 1; ... ; 4} [/mm]
A

hi,
Also ich denke, ich muss ähnlich wie in der Vorlesung anfangen:
ich nehme die [mm] a_i [/mm] als Basis
[mm] u_h=\summe_{i=0}^{3}a_i x^i [/mm]
schwache Formulierung
[mm] a(u_h, [/mm] v) =< l, v >
Um dann auf das GLS Ax=b zu kommen mit
[mm] A:=(a(a_i,a_k))_{ik} [/mm]
b:=(< l, [mm] a_k [/mm] >)k
[mm] x:=(x^i)_i [/mm]
Also wegen der Randbedingung müsste ich doch schon sagen können [mm] a_0=1? [/mm]
Aber wie soll ich den Rest der Matrix lösen? Ist es bis hierher überhaupt richtig?

        
Bezug
Ritz-Galerkin-Ansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Di 25.01.2011
Autor: MathePower

Hallo KingHenni,

> Betrachten Sie für  [mm]\Omega[/mm] = (0,1) das RWP
>  [mm]\Delta[/mm] u = 0; in  [mm]\Omega[/mm]
>  
> u(0) = 1;
>  u(1) = 0
>  und bestimmen Sie die schwache Lösung entsprechend dem
> Ritz-Galerkin-Ansatz in dem Raum
>  P3 := [mm]{a_0 + a_1x + a_2x^2 + a_3x^3 | a_i \in \IR; i = 1; ... ; 4}[/mm]
>  
> A
>  hi,
>  Also ich denke, ich muss ähnlich wie in der Vorlesung
> anfangen:
>  ich nehme die [mm]a_i[/mm] als Basis
>  [mm]u_h=\summe_{i=0}^{3}a_i x^i[/mm]
>  schwache Formulierung
>  [mm]a(u_h,[/mm] v) =< l, v >


Die Bedeutung von [mm]a\left(\*,\*\right), \ v,\ l [/mm] mußt Du uns schon
mitteilen, da wir nicht über Dein Vorlesungsskript verfügen.


>  Um dann auf das GLS Ax=b zu kommen mit
>  [mm]A:=(a(a_i,a_k))_{ik}[/mm]
>  b:=(< l, [mm]a_k[/mm] >)k
>  [mm]x:=(x^i)_i[/mm]
>  Also wegen der Randbedingung müsste ich doch schon sagen
> können [mm]a_0=1?[/mm]
>  Aber wie soll ich den Rest der Matrix lösen? Ist es bis
> hierher überhaupt richtig?


Gruss
MathePower

Bezug
                
Bezug
Ritz-Galerkin-Ansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Do 27.01.2011
Autor: Kinghenni

hey, sry...konnts jetzt aber lösen...
als [mm] a(\gamma_i,\gamma_j)=\integral_{}^{}{ \gamma_i' * \gamma_j'dx} [/mm]
und v war ne testfunktion aus dem geeignetetn raum

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]