matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationRomberg-Extrapolation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Interpolation und Approximation" - Romberg-Extrapolation
Romberg-Extrapolation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Romberg-Extrapolation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:52 Mo 10.11.2008
Autor: jumape

Aufgabe
Ausgehend von der zusammengesetzten Trapezregel [mm] T_{i0} [/mm] und der Rombergfolge [mm] N_i=2^i, h_i=\bruch{b-a}{2^i} [/mm] zeige man, dass
(i)  [mm] T_{i1} [/mm] der zusammengesetzten Simpsonformel entspricht,
(ii) [mm] T_{i2} [/mm] der zusammengesetzten Newton-Cotes-Formel für quadratische Polynome entspricht (Milne-Regel mit Gewichten [mm] \bruch{7}{90}, \bruch{32}{90}, \bruch{12}{90}, \bruch{32}{90}, \bruch{7}{90} [/mm]

Ich komme leider nicht auf die Simpsonformel. Hier nochmal kurz wie die aussehen. Also die Trapezformel:
[mm] T[h](f):=T_N(f)=\bruch{h}{2}[f_0+2\summe_{k=1}^{N-1}+f_{N}] [/mm]
und die Simpsonformel:
[mm] S_N(f)=\bruch{h}{3}(f_0+4f_1+2f_2+4f_3+....+4f_{N-1}+f_N) [/mm]
Ich komme leider immer nur auf die Simpsonformel, allerdings so dass vor jedem [mm] f_i [/mm] mit i nicht 0 oder N 2 steht also wie in der Trapezformel.
An die Newton-Cotes-Formel habe ich mich noch gar nicht rangewagt.
Es wäre nett wenn mir jemand helfen könnte.



        
Bezug
Romberg-Extrapolation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Do 13.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]