Rotationskörper < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | 11) Volumen eines Flüssigtanks
11.1) Zeige mithilfe eines geeigneten Zylinders, dass der Tank weniger als 3100l Gas enthält.
11.2) Wir kennen die Formel für die Berechnung des Volumens eines Rotationskörpers aus dem Unterricht: [mm] V=\pi*\integral_{a}^{b}{(f(x))^2 dx}
[/mm]
Erläutere die Herleitung dieser Formel. |
Muss ich bei der ersten Aufgabe einfach das Volumen des Zylinders von dem gezeigten Tank errechnen?
Und Aufgabe zwei krieg ich ja gar net gebacken.. [mm] \pi [/mm] und das zum quadrat sind ja eigentlich von der Zylinderberechnung G*h oder nicht? also [mm] \pi*r^2*h...
[/mm]
Aber ist das schon die ganze Erklärung??
Liebe Grüße, Melli
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:58 So 19.11.2006 | Autor: | Melli1988 |
Ich wollte den Tank hochladen... hatte den allerdings in Paint gezeichnet und irgendwie nimmt der das nicht. Ich bin nicht so ein PC-crack, hab also keine Ahnung wie ich das ändern kann :).
Ich kann ihn beschreiben. Eigentlich ist er Zylinderförmig und hat an den Seiten zwei "Halbkreise". Die Maße: Der Tank "liegt". Ohne die Halbkreise ist die Länger 2000mm. Mit: 2500mm. Und die Höhe beträgt 1250mm.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:14 So 19.11.2006 | Autor: | Maggons |
Huhu,
Falls du für Aufgabe 1 Werte angegeben hast, musst du nur diese Einsetzen in deine Formel und dann sollte diese Zahl ja kleiner als 31001 ergeben.
Ich weiß nicht, wie ihr die Integralrechnung anfangs bei z.b. der Normalparabel belegt habt.
Ich selbst habe das Beweisen von deiner Formel erst vor einer Woche oder so gemacht und es ist wirklich nicht viel mehr, als das Übertragen Der Zylinderformel [mm] \pi*r² [/mm] in die Formel des Integrals.
Falls du dich mit Summenformeln auskennst:
Wir haben es mit der Summenformel gemacht:
[mm] \summe_{i=1}^{n} \pi [/mm] * b/n *f(i*b/n)²
Ich hoffe, dass ihr auch bereits mit Summenformeln gearbeitet habt, du bist ja auch 12er LK...
[mm] \pi [/mm] * b/n wäre in der Formel für die Zylinderhöhe
f(i*b/n)² wäre in der Formel für den Zylinderradius
Wenn man nun Einschachtelungen in n Teile wie bei einer Parabel machen würde, wären diese 3- dimensional, somit kann man das Volumen von Zylindern/ Rotationskörpern damit bestimmen.
Wenn man dann n gegen unendlich laufen lässt, [mm] \limes_{n\rightarrow\infty}, [/mm] kommt ein genauer wert herraus und somit das Ergebnis deines Integrals.
Hoffe ich konnte dir helfen
MfG Marco
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 14:49 So 19.11.2006 | Autor: | Melli1988 |
Ja, wir haben die Summenformel gemacht. Allerdings nur in der ersten Stunde zur Einführung. Kannst du mir nochmal erklären was genau [mm] \pi [/mm] und so bei dem Summenzeichen angeben? zum genauen Verständnis?
Dankööö
Liebe Grüße, Melli
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:33 So 19.11.2006 | Autor: | Maggons |
Ich habe doch oben schon jeweils etwas dazu geschrieben :/
Wenn du bereits die Summenformeln in Ansätzen besprochen hast, weißt du ja bestimmt, dass man eine Fläche (oder hier einen Rotationskörper) immer in n Intervalle unterteilt.
Man rechnet hier in diesem Beispiel n viele Kleine Zylinder aus, die dann durch die Summenformel letztendlich zusammengerechnet werden.
Die jeweiligen Bedeutungen der Einzelnen Formelbestandteile habe ich ja oben bereits erläutert.
Wenn du noch Hilfe bei deiner Aufgabe brauchst, würde ich gerne wissen, wie dieser Gastank aussieht, sind dies "halbkreise" auch höhe als der Rest weil man ja sonst keine Unterteilung bräuchte und die Länge der Halbkreise einfach zum restlichen Tank hinzuaddieren könnte?
Und von wo gilt diese Höhe? Soll es der Durchmesser d oder der Radius R sein?
Lg
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:03 So 19.11.2006 | Autor: | Melli1988 |
Ich meinte eigentlich an diesem Summenzeichen direkt.. das [mm] \pi [/mm] rechts vom Summenzeichen etc... dass man damit alle zusammenrechnet weiß ich noch..
Der Durchmesser ist die höhe. Und die Halbkreise sind einfach am Zylinder dran, jedoch flacher... das heißt Radius o.ä. ist dort nicht gegeben.
|
|
|
|