matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungRotationsvolumen berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Rotationsvolumen berechnen
Rotationsvolumen berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationsvolumen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 So 10.12.2006
Autor: bOernY

Aufgabe
Zeichne den Graphen der Funktion f mit f(x)=[mm] \bruch{1}{2} \wurzel{25-x^2} [/mm] und bestimme die Gleichung der Tangente an der Stelle x=3 . Durch Roation des Graphen von f und der Tangente um die 1. Achse ensteht ein stromlinienförmiger Körper. Berechne sein Volumen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also das mit dem Zeichnen ist ja jetzt nicht das Problem.
Zunächst habe ich die erste Ableitung von f gebildet, welche bei mir f'(x)= [mm] \bruch{1}{3 \wurzel{25-x^2}} - 1 [/mm]

Die Funktion der Tangente wäre dann:
g(x)= [mm] - \bruch{13}{12} x + \bruch{29}{4}[/mm]

Nun habe ich den Schnittpunkt der Tangente mit der x-Achse berechnet welcher bei Q([mm] \bruch{87}{13} [/mm]/0) liegt.

Was muss ich nun machen? Mein Problem ist, dass die Fläche sich ja außerhalb des Graphen von f befindet.

        
Bezug
Rotationsvolumen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Mo 11.12.2006
Autor: hopsie


> Zeichne den Graphen der Funktion f mit f(x)=[mm] \bruch{1}{2} \wurzel{25-x^2}[/mm]
> und bestimme die Gleichung der Tangente an der Stelle x=3 .
> Durch Roation des Graphen von f und der Tangente um die 1.
> Achse ensteht ein stromlinienförmiger Körper. Berechne sein
> Volumen
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Also das mit dem Zeichnen ist ja jetzt nicht das Problem.
>  Zunächst habe ich die erste Ableitung von f gebildet,
> welche bei mir f'(x)= [mm]\bruch{1}{3 \wurzel{25-x^2}} - 1[/mm]

Hallo!

Die Ableitung stimmt nicht. Wenn du eine Wurzel ableitest schaut das so aus: [mm] (\wurzel{x})' [/mm] = [mm] \bruch{1}{2*\wurzel{x}} [/mm]
Zum anderen musst du bei deiner Funktion auch noch nachdifferenzieren.
Schau dir am Besten noch mal die Regeln an, und versuchs nochmal.
Gruß, hopsie

Bezug
        
Bezug
Rotationsvolumen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Mo 11.12.2006
Autor: M.Rex

Hallo.

Die Formel für das Volumen eines Rotationskörpers ist übrigens:

[mm] V=\pi\integral_{a}^{b}(f(x))²dx. [/mm]

Du musst hier aber noch die Grenzen a und b sowie die genaue Funktion berechnen.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]