Rücktransformation < z-transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Transformiere:
H(z) = [mm] \bruch{(z+1)^{2}}{z(z^{2}+1)} [/mm] |
Hallo,
Ich habe Probleme diese Funktion in den Zeitbereich rückzutransformieren. Ich habs mit Partialbruchzerlegung probiert, mit Bruch erweitern, mit Umschreiben, aber ich komme nie auf eine Form die man (bzw. Ich) Rücktransformieren kann. Kann mir jemand helfen?
Danke schon mal im Voraus.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:54 Sa 03.12.2011 | Autor: | Infinit |
Hallo Wieselwiesel,
das Ganze ist gar nicht so schwer, wenn man sich klarmacht, dass diskrete Werte zu dieser Übertragungsfunktion gehören und dass ein Term der Art [mm] X(z)\cdot z^{-k} [/mm] zu einem um k Zeitschritte verzögerten Signal führt. Aus einer Signalfolge [mm] u(m) [/mm] wird eine neue Folge [mm] u(m-k) [/mm].
Schauen wir uns mal Deine Gleichung an, wobei ich gleich mal eine Eingangs- und eine Ausgangsfunktion ansetze, so steht da doch
[mm]\bruch{Y(z)}{X(z)}= \bruch{z^2 + 2z +1}{z^3+z} [/mm]
Um auf die oben angegebene Form zu kommen, empfiehlt es sich, Zähler und Nenner mit [mm] z^{-3} [/mm] zu multiplizieren und so bekommt man
[mm] \bruch{Y(z)}{X(z)}= \bruch{z^{-1} + 2z^{-2}+z^{-3}}{1+z^{-2}} [/mm]
Jetzt über Kreuz ausmultiplizieren:
$ [mm] Y(z)\cdot (1+z^{-2})= [/mm] X(z) [mm] \cdot (z^{-1} [/mm] + [mm] 2z^{-2}+z^{-3}) [/mm] $
Hieraus bekommst Du nun das Verhältnis von Ausgangs- zu Eingangsfolgen mit der oben angegebenen "Verschiebungsregel".
Viele Grüße,
Infinit
|
|
|
|
|
Danke für deine schnelle Antwort!
Ich bin nicht ganz sicher ob ich richtig verstanden habe, was du erklärst, mMn würde das zu [mm] f(t)_{Ausgang}(\delta_{1-i} [/mm] + 2 [mm] \delta_{2-i} [/mm] + [mm] \delta_{3-i}) [/mm] = [mm] f(t)_{Eingang}(\delta_{i} [/mm] + [mm] \delta_{2-i}) [/mm] führen. Aber was wären meine f(t)? Oder hab ich das ganz falsch verstanden?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:55 Sa 03.12.2011 | Autor: | Infinit |
Hallo,
ja, das hast Du schon richtig verstanden, denn die Übertragungsfunktion ist ja nichts weiter als da Verhältnis von Ausgangs- zu Eingangssignal.
Für eine geschlossene Lösung kannst Du Fencheltees Tipp folgen.
Viele Grüße,
Infinit
|
|
|
|
|
> Transformiere:
> H(z) = [mm]\bruch{(z+1)^{2}}{z(z^{2}+1)}[/mm]
> Hallo,
>
> Ich habe Probleme diese Funktion in den Zeitbereich
> rückzutransformieren. Ich habs mit Partialbruchzerlegung
> probiert, mit Bruch erweitern, mit Umschreiben, aber ich
> komme nie auf eine Form die man (bzw. Ich)
> Rücktransformieren kann. Kann mir jemand helfen?
>
hallo,
infinit hat natürlich recht. wenn du aber lieber stur rechnest, kommst du mit ner pbz von H(z)/z und anschließender multiplikation der ansätze mit z natürlich auch weiter (wenn man an die verschiebungsregel denkt). kannst deine letzte rechnung ja mal posten
> Danke schon mal im Voraus.
gruß tee
|
|
|
|