matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Runge Kutta3
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Runge Kutta3
Runge Kutta3 < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Runge Kutta3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 Di 21.09.2021
Autor: Leon33

Aufgabe
Hey hier nochmal eine Aufgabe zu Runge Kutta .
Meine Aansätze stehen im upload

Was muss ich mach nach dem mein [mm] k_2 [/mm] fest steht?

Weiss aber nicht wie ich jetzt weiter vorgehen soll?


nicht gestellt

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Runge Kutta3: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Di 21.09.2021
Autor: meili

Hallo Leon33,

> Hey hier nochmal eine Aufgabe zu Runge Kutta .
>  Meine Aansätze stehen im upload

[mm] $u_{j+1}$ [/mm] ist ok.
Bei [mm] $k_1$ [/mm] und [mm] $k_2$ [/mm] fehlen ganz am Ende jeweils eine schließende Klammer.
[mm] $\gamma_1 [/mm] = 1$ und [mm] $\gamma_2 [/mm] = [mm] \bruch{1}{3}$ [/mm] sind noch zu ersetzen.

>  
> Was muss ich mach nach dem mein [mm]k_2[/mm] fest steht?
>  
> Weiss aber nicht wie ich jetzt weiter vorgehen soll?

In die Gleichungen [mm] $k_1 [/mm] = [mm] \ldots [/mm] $ und  [mm] $k_2 [/mm] = [mm] \ldots [/mm] $ das $f(t,y)$ der Aufgabe einsetzen.
Gibt dann für  [mm] $k_1 [/mm] = [mm] \ldots [/mm] $:

[mm] $k_1 [/mm] = [mm] -4*(u_j [/mm] + [mm] \bruch{1}{4}*( \bruch{1}{3}*k_1 [/mm] + [mm] \bruch{2}{3}*k_2))$ [/mm]

Ebenso mit [mm] $k_2 [/mm] = [mm] \ldots [/mm] $ machen.

Dann erst Gleichung für [mm] $k_2$ [/mm] auflösen.  [mm] $k_2$ [/mm]  in Gleichung für  [mm] $k_1$ [/mm]
einsetzen und diese dann nach  [mm] $k_1$ [/mm]  auflösen.

>  
> nicht gestellt

Gru´meili

Bezug
                
Bezug
Runge Kutta3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Di 21.09.2021
Autor: Leon33

Habe es ein wenig anders gelöst :
[latex] [mm] k_1 [/mm] = [mm] \lambda (u_j+ h*(\frac{1}{3}k_1+\frac{2}{3} k_2) [/mm]  [/latex]

[latex] [mm] k_2 [/mm] = [mm] \lambda (u_j+ h*\frac{1}{3}k_2 [/mm] ) [/latex]
[latex] [mm] k_2 [/mm] = [mm] -4*(1+\frac{1}{4}*\frac{1}{3}k_2 [/mm] )[/latex]

[latex] [mm] k_2 [/mm] = -3[/latex]

[latex] [mm] k_1 [/mm] = [mm] -4*(1+\frac{1}{4}*(\frac{1}{3}k_1 [/mm] -2) )[/latex]

[latex] [mm] k_1 [/mm] = [mm] -4*(1+\frac{1}{12}k_1-(\frac{1}{2})[/latex] [/mm]

[mm] k_1 [/mm] = -3/2


[mm] u_1 [/mm] = 1+ 1/4 *( -3/4 - 3/2 ) =

1 - 3/16 -3/8 =  1 - 9/16 = 16/16 - 9/16 = 17/16

Passt das?

Bezug
                        
Bezug
Runge Kutta3: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Di 21.09.2021
Autor: meili

Hallo Leon33,

> Habe es ein wenig anders gelöst :

Nö. Vielleicht mal ein f gegen ein [mm] $\lambda$ [/mm] ausgetauscht, aber sonst
ist es genauso gemacht wie beschrieben.

>   [latex] [mm]k_1[/mm] = [mm]\lambda (u_j+ h*(\frac{1}{3}k_1+\frac{2}{3} k_2)[/mm]
>  [/latex]
>  
> [latex] [mm]k_2[/mm] = [mm]\lambda (u_j+ h*\frac{1}{3}k_2[/mm] ) [/latex]
>  [latex] [mm]k_2[/mm] = [mm]-4*(1+\frac{1}{4}*\frac{1}{3}k_2[/mm] )[/latex]
>
> [latex] [mm]k_2[/mm] = -3[/latex]
>
> [latex] [mm]k_1[/mm] = [mm]-4*(1+\frac{1}{4}*(\frac{1}{3}k_1[/mm] -2)
> )[/latex]
>  
> [latex] [mm]k_1[/mm] = [mm]-4*(1+\frac{1}{12}k_1-(\frac{1}{2})[/latex][/mm]
>  
> [mm]k_1[/mm] = -3/2
>  
>
> [mm]u_1[/mm] = 1+ 1/4 *( -3/4 - 3/2 ) =
>  
> 1 - 3/16 -3/8 =  1 - 9/16 = 16/16 - 9/16 = 17/16
>  
> Passt das?

[ok]

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]