matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteS Matrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - S Matrix
S Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

S Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Do 26.03.2009
Autor: MathePhobie

Aufgabe
Erklären Sie die Zerlegung A = SDS^−1 anhand eines konkreten Beispiels. Sei also weiterhin A = [mm] \pmat{ 2 & 3 \\ 0 & 4 } [/mm] Sei weiters x =  [mm] \vektor{1 \\ 2} [/mm] ein Vekor. Geben Sie für diese konkrete Matrix A die Matrizen S, S−1 und D an, sodass A = SDS^−1.

Ich verzweifle langsam kann mir das bitte bitte wer vorrechnen :(
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
S Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Do 26.03.2009
Autor: XPatrickX

Hallo,

du musst doch schon irgendetwas zu dem Thema gemacht haben. Bedenke, dass wir hier im Forum auch eigene Lösungsansätze erwarten.

Ich will dr mal die Schritte sagen. Dann kannst du ja mal hier im Forum deine Rechnung posten.

-rechne die Eigenwerte von A aus. Die Eigenwerte [mm] \lambda [/mm] einer Matrix A sind genau die Nullstellen des charakteristischen Polynoms: [mm] det(\lambda*I-A) [/mm]

-Berechne die Eigenvektoren x, durch [mm] $Ax=\lambda [/mm] x$

-Schreibe die Eigenvektoren als Spalten in eine Matrix. Dies ist deine Matrix S.


Gruß Patrick


Bezug
                
Bezug
S Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Do 26.03.2009
Autor: MathePhobie

Aufgabe
Eigenwerte von A: [mm] \lambda=2 [/mm]  und  [mm] \lambda=4 [/mm]
Eigenvektoren x: [mm] \vektor{1 \\ 0} \vektor{3 \\ 2} [/mm]
Dann ist mein S: [mm] \pmat{ 1 & 3 \\ 0 & 2 } [/mm]

Für was brauche ich den gegebenen Vektor?
WIe kann ich aus der A Matrix meine Diagonalm. berechnen?
Ich glaub dann hätte ich es oder Patrick :)
mit dir macht mathe bissl spaß

Bezug
                        
Bezug
S Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Do 26.03.2009
Autor: XPatrickX


> Eigenwerte von A: [mm]\lambda=2[/mm]  und  [mm]\lambda=4[/mm]

[ok] Die stehen bei einer Dreiecksmatrix ja auch auf der Diagonalen!

>  Eigenvektoren x: [mm]\vektor{1 \\ 0} \vektor{3 \\ 2}[/mm]

Jup, das hatten wir ja schon im anderen Thread.

>  Dann ist
> mein S: [mm]\pmat{ 1 & 3 \\ 0 & 2 }[/mm] [ok]
>  Für was brauche ich den
> gegebenen Vektor?

Das ist mir auch nicht klar. Evtl. in einer anderen Teilaufgabe!?

>  WIe kann ich aus der A Matrix meine Diagonalm. berechnen?

Aus A = [mm] SDS^{-1} [/mm] folgt doch [mm] D=S^{-1}AS [/mm]


>  Ich glaub dann hätte ich es oder Patrick :)

Ja, du bist fast fertig!

>  mit dir macht mathe bissl spaß

hehe, freut mich :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]