matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenSatz ü. stetig diff. Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Satz ü. stetig diff. Funktion
Satz ü. stetig diff. Funktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz ü. stetig diff. Funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:04 Mo 04.12.2017
Autor: X3nion

Hallo zusammen!

Mir ist das ein oder andere bei folgendem Satz nicht klar:

Satz Sei U [mm] \subset \IR^{n} [/mm] offen und f: U [mm] \to \IR [/mm] eine k-mal stetig differenzierbare Funktion. Sei x [mm] \in [/mm] U und [mm] \xi \in \IR^{n} [/mm] ein Vektor derart, dass die Strecke x + [mm] t\xi, [/mm] 0 [mm] \le [/mm] t [mm] \le [/mm] 1, ganz in U liegt. Dann ist die Funktion

g: [0,1] [mm] \to \IR, [/mm] g(t) := f( x + [mm] t\xi), [/mm]

k-mal stetig differenzierbar und es gilt

[mm] \frac{d^{k}(g)}{dt^{k}}(t) [/mm] = [mm] \summe_{|\alpha| = k} [/mm] = [mm] \frac{k!}{\alpha!} (D^{\alpha}f)(x+t\xi)\xi^{\alpha}, [/mm]

wobei folgende Bezeichnungen eingeführt werden:

Für ein n-tupel [mm] \alpha [/mm] = [mm] (\alpha_{1}, [/mm] ..., [mm] \alpha_{n}) \in \IN^{n} [/mm] sei

[mm] |\alpha| [/mm] := [mm] \a_{1} [/mm] + [mm] a_{2} [/mm] + ... + [mm] a_{n}, [/mm]
[mm] \alpha| [/mm] := [mm] \alpha_{1}|\alpha_{2}|\cdot{}...\cdot{}\alpha_{n}. [/mm]

Ist f eine [mm] |\alpha|-mal [/mm] stetig differenzierbare Funktion, so setzt man

[mm] D^{\alpha}f [/mm] := [mm] D_{1}^{\alpha_{1}}D_{2}^{\alpha_{2}}...D_{n}^{\alpha_{n}} [/mm] f = [mm] \frac{\partial^{|\alpha|}f}{\partial x_{1}^{\alpha_{1}}\partial x_{2}^{\alpha_{2}}...\partial x_{n}^{\alpha_{n}}} [/mm]

wobei [mm] D_{i}^{\alpha_{i}} [/mm] = [mm] \underbrace{D_{i}D_{i}...D_{i}}_{=\alpha_{i} mal}. [/mm]

Für x [mm] (x_{1}, [/mm] ..., [mm] x_{n}) \in \IR^{n} [/mm] sei

[mm] x^{\alpha} [/mm] := [mm] x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}\cdot{}...\cdot{}x_{n}^{\alpha_{n}} [/mm]


Beweis
Hier schreibe ich zunächst Teil a) auf und wenn ich es verstanden habe Teil b)

a) Es wird zunächst durch Induktion über k gezeigt, dass

[mm] \frac{d^{k}(g)}{dt^{k}}(t) [/mm] = [mm] \summe_{i_{1},...,i_{k}=1}^{n} D_{i_{k}}...D_{i_{1}} [/mm] f(x + [mm] t\xi)\xi_{i_{1}}...\xi_{i_{k}}. [/mm]

Für k = 1 ergibt sich aus der Kettenregel

[mm] \frac{dg}{dt}(t) [/mm] = [mm] \frac{d}{dt} f(x_{1} [/mm] + [mm] t\xi_{1}, [/mm] ..., [mm] x_{n} [/mm] + [mm] t\xi_{n}) [/mm] = [mm] \summe_{i=1}^{n}D_{i}f(x [/mm] + [mm] t\xi)\xi_{i} [/mm]

Induktionsschritt k-1 [mm] \to [/mm] k

[mm] \frac{d^{k}(g)}{dt^{k}}(t) [/mm] = [mm] \frac{d}{dt} \left( \summe_{i_{1},...,i_{k-1}=1}^{n} D_{i_{k-1}}...D_{i_{1}} f(x + t\xi)\xi_{i_{1}}...\xi_{i_{k-1}}\right) [/mm] = [mm] \summe_{j=1}^{n}D_{j} \left( \summe_{i_{1},...,i_{k-1}=1}^{n} D_{i_{k-1}}...D_{i_{1}} f(x + t\xi)\xi_{i_{1}}...\xi_{i_{k-1}} \right) \xi_{j} [/mm]
= [mm] \summe_{i_{1},...,i_{k}=1}^{n} D_{i_{k}}...D_{i_{1}} [/mm] f(x + [mm] t\xi)\xi_{i_{1}}...\xi_{i_{k}} [/mm]

---------

Nun zu meiner Frage:

Wieso gilt die Gleichheit (*)  [mm] \frac{d}{dt} \left( \summe_{i_{1},...,i_{k-1}=1}^{n} D_{i_{k-1}}...D_{i_{1}} f(x + t\xi)\xi_{i_{1}}...\xi_{i_{k-1}}\right) [/mm] = [mm] \summe_{j=1}^{n}D_{j} \left( \summe_{i_{1},...,i_{k-1}=1}^{n} D_{i_{k-1}}...D_{i_{1}} f(x + t\xi)\xi_{i_{1}}...\xi_{i_{k-1}} \right) \xi_{j} [/mm] ?

Wird hier das Corollar zur Kettenregel benutzt? Dieses lautet im Forster: Seien U [mm] \subset \IR^{n} [/mm] und V [mm] \subset \IR^{m} [/mm] offene Mengen, f: V [mm] \to \IR, [/mm] x [mm] \mapsto [/mm] f(x) eine differenziarbare Funktion sowie

[mm] \phi [/mm] = [mm] \vektor{\phi_{1}\\ \phi_{2}\\ . \\ . \\ \phi_{n}} [/mm] : U [mm] \to \IR^{m}, [/mm] t [mm] \mapsto [/mm] x = [mm] \phi(t), [/mm]

eine differenzierbare Abbildung mit [mm] \phi(U) \subset [/mm] V. Dann ist die Funktion

F := f [mm] \circ \phi [/mm] : U [mm] \to \IR, [/mm] t [mm] \mapsto f(\phi(t)) [/mm]

partiell differenzierbar und es gilt für i = 1, ..., n

[mm] \frac{\partial F}{\partial t_{i}} (t_{1}, [/mm] ..., [mm] t_{n}) [/mm] = [mm] \summe_{j=1}^{m} \frac{\partial f}{\partial x_{j}} (\phi_{1}(t), [/mm] ..., [mm] \phi_{m}(t)) \frac{\partial \phi_{j}}{\partial t_{i}}(t_{1}, [/mm] ..., [mm] t_{n}). [/mm]

Mit t [mm] \in \IR [/mm] reduziert sich diese Formel ja auf:

[mm] \frac{\partial F}{\partial t} [/mm] (t) = [mm] \summe_{j=1}^{m} \frac{\partial f}{\partial x_{j}} (\phi(t)) \frac{\partial \phi_{j}}{\partial t}(t). [/mm]

Würde man auf obige Gleichung (*) die Kettenregel anwenden, dann müsste ja die Funktion [mm] f(\phi(t)) [/mm] die komplette Summe [mm] \summe_{i_{1},...,i_{k-1}=1}^{n} D_{i_{k-1}}...D_{i_{1}} [/mm] f(x + [mm] t\xi)\xi_{i_{1}}...\xi_{i_{k-1}} [/mm] sein.
Ist dies der Fall? Und [mm] \frac{\partial \phi_{j}}{\partial t}(t) [/mm] = [mm] \xi_{j} [/mm] ?



Ich wäre euch sehr dankbar für euren Rat!

Viele Grüße,
X3nion

        
Bezug
Satz ü. stetig diff. Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 08.12.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]