Satz von Fubini < Sonstige < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei D das Gebiet, das sich aus dem Kegelstumpf
K = {(x, y, [mm] z)^{T} \in \IR^{3} [/mm] | [mm] \wurzel{x^2 + y^2} \le \bruch{-z+3}{2}, [/mm] z [mm] \ge [/mm] 1}
und dem Zylinder
Z = {(x, y, [mm] z)^{T} \in \IR^{3} [/mm] | [mm] x^2+y^2 \le [/mm] 1 [mm] \wedge [/mm] 0 [mm] \le [/mm] z [mm] \le1 [/mm] }
zusammensetzt
a) Bestimmen Sie das Volumen von D mit dem Satz von
Fubini. |
[mm] \integral_{Z}^{}{1 d(x,y,z)} [/mm] + [mm] \integral_{K}^{}{1 d(x,y,z)}
[/mm]
[mm] =\integral_{0}^{1}\integral_{-1}^{1}\integral_{-\wurzel{1-y^2}}^{\wurzel{1-y^2}}{1 d(x,y,z)} [/mm] + [mm] \integral_{1}^{3}\integral_{\bruch{z-3}{2}}^{\bruch{-z+3}{2}}\integral_{-\wurzel{(\bruch{-z+3}{2})^2 -y^2}}^{\wurzel{(\bruch{-z+3}{2})^2 -y^2}}{1 d(x,y,z)}
[/mm]
in der Skizze ist ein Zylinder gezeigt, der den Ursprung in (0,0,0), einen Radius von 1 und die Höhe 1 hat, darauf sitzt der Kegel der auf der Hohe (z-Koordinate) 1 beginnt und bis zu z=3 oben zusammenläuft (im Prinzip ein rundes Häuschen)
fangen wir mal mit dem Zylinder an, dieser geht in z richtung ja von 0 bis 1, daher ist diese Grenze schonmal klar, Radius 1 also geht die y Richtung von -1 bis 1, 2. Grenze damit auch klar, die letzte grenze ergibt sich dann aus der Formel die im angegebenen Gebiet steht, daher ist mir das ebenfalls klar.
Beim Kegel habe ich jedoch ein Problem, grenze 1-3 verstehe ich, wie man auf darauf [mm] (\integral_{-\wurzel{(\bruch{-z+3}{2})^2 -y^2}}^{\wurzel{(\bruch{-z+3}{2})^2 -y^2}}) [/mm] kommt verstehe ich auch, das ergibt sich ja wieder aus der angegebenen Formel, aber wie setzt sich denn nun diese Grenze [mm] (\integral_{\bruch{z-3}{2}}^{\bruch{-z+3}{2}}) [/mm] zusammen?
|
|
|
|
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo Aldiimwald,
> Sei D das Gebiet, das sich aus dem Kegelstumpf
>
> K = {(x, y, [mm]z)^{T} \in \IR^{3}[/mm] | [mm]\wurzel{x^2 + y^2} \le \bruch{-z+3}{2},[/mm]
> z [mm]\ge[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
1}
>
> und dem Zylinder
>
> Z = {(x, y, [mm]z)^{T} \in \IR^{3}[/mm] | [mm]x^2+y^2 \le[/mm] 1 [mm]\wedge[/mm] 0 [mm]\le[/mm]
> z [mm]\le1[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
}
>
> zusammensetzt
> a) Bestimmen Sie das Volumen von D mit dem Satz von
> Fubini.
>
>
> [mm]\integral_{Z}^{}{1 d(x,y,z)}[/mm] + [mm]\integral_{K}^{}{1 d(x,y,z)}[/mm]
>
> [mm]=\integral_{0}^{1}\integral_{-1}^{1}\integral_{-\wurzel{1-y^2}}^{\wurzel{1-y^2}}{1 d(x,y,z)}[/mm]
> +
> [mm]\integral_{1}^{3}\integral_{\bruch{z-3}{2}}^{\bruch{-z+3}{2}}\integral_{-\wurzel{(\bruch{-z+3}{2})^2 -y^2}}^{\wurzel{(\bruch{-z+3}{2})^2 -y^2}}{1 d(x,y,z)}[/mm]
>
> in der Skizze ist ein Zylinder gezeigt, der den Ursprung in
> (0,0,0), einen Radius von 1 und die Höhe 1 hat, darauf
> sitzt der Kegel der auf der Hohe (z-Koordinate) 1 beginnt
> und bis zu z=3 oben zusammenläuft (im Prinzip ein rundes
> Häuschen)
>
> fangen wir mal mit dem Zylinder an, dieser geht in z
> richtung ja von 0 bis 1, daher ist diese Grenze schonmal
> klar, Radius 1 also geht die y Richtung von -1 bis 1, 2.
> Grenze damit auch klar, die letzte grenze ergibt sich dann
> aus der Formel die im angegebenen Gebiet steht, daher ist
> mir das ebenfalls klar.
>
> Beim Kegel habe ich jedoch ein Problem, grenze 1-3 verstehe
> ich, wie man auf darauf
> [mm](\integral_{-\wurzel{(\bruch{-z+3}{2})^2 -y^2}}^{\wurzel{(\bruch{-z+3}{2})^2 -y^2}})[/mm]
> kommt verstehe ich auch, das ergibt sich ja wieder aus der
> angegebenen Formel, aber wie setzt sich denn nun diese
> Grenze [mm](\integral_{\bruch{z-3}{2}}^{\bruch{-z+3}{2}})[/mm]
> zusammen?
Damit der Ausdruck
[mm]\wurzel{\left(\bruch{-z+3}{2}\right)^2 -y^2}}[/mm]
definiert ist, muß
[mm]\left(\bruch{-z+3}{2}\right)^2 -y^2} \ge 0 [/mm]
sein.
Daher bestimmen sich die Grenzen für y aus der Gleichung
[mm]\left(\bruch{-z+3}{2}\right)^2 -y^2} = 0 [/mm]
Gruss
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:19 Mo 17.01.2011 | Autor: | Aldiimwald |
ahh ja klar! Dankeschön!
(ist ne echte Qual gewesen die ganzen Integrale fehlerfrei im Formeleditor einzugeben^^)
|
|
|
|