Satz von Gauß < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:45 Fr 12.06.2020 | Autor: | Ataaga |
Aufgabe | Ein Körper K sei gegeben durch :
[mm] \[
[/mm]
[mm] K=\left\{(x, y, z) \in \mathbb{R}^{3}: x \in[-1,1], y \in[0,2], z \in\left[0,1-x^{2}\right]\right\}
[/mm]
Außerdem sei für [mm] \( [/mm] a [mm] \in \mathbb{R} \) [/mm] ein Vektorfeld gegeben durch:
[mm] \[
[/mm]
w(x, y, [mm] z)=\left(\begin{array}{c}
x \\
y^{2} \\
a
\end{array}\right)
[/mm]
a) Berechnen Sie den Fluss des Vektorfelds w durch die Oberfläche des Körpers K direkt,
d.h. durch Oberflächenintegrale.
Berechnung von 4 Oberflächenintegralen.
Dach: Parametrisierung [mm] \( \Phi(x, y)=\left(\begin{array}{c}x \\ y \\ 1-x^{2}\end{array}\right),(x, [/mm] y) [mm] \in [/mm] D=[-1,1] [mm] \times[0,2] \)
[/mm]
[mm] \[
[/mm]
[mm] \Rightarrow \Phi_{x}(x, [/mm] y) [mm] \times \Phi_{y}(x, y)=\left(\begin{array}{c}
1 \\
0 \\
-2 x
\end{array}\right) \times\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 x \\
0 \\
1
\end{array}\right)
[/mm]
[mm] \( \begin{aligned} \iint_{D K_{1}} w \cdot \hat{n} d \mathcal{O} &=\iint_{D} w(\Phi(x, y)) \cdot\left(\Phi_{x}(x, y) \times \Phi_{y}(x, y)\right) d(x, y) \\ &=\iint_{D}\left(\begin{array}{c}x \\ y^{2} \\ a\end{array}\right) \cdot\left(\begin{array}{c}2 x \\ 0 \\ 1\end{array}\right) d(x, y)=\int \limits_{0}^{2} \int \limits_{-1}^{1} 2 x^{2}+a d x d y \\ &=\int \limits_{0}^{2}\left[\frac{2}{3} x^{3}+a x\right]_{-1}^{1} d y=\int \limits_{0}^{2} \frac{4}{3}+2 a d y=\left[\left(\frac{4}{3}+2 a\right) y\right]_{0}^{2}=\frac{8}{3}+4 a \end{aligned} \)
[/mm]
2. Boden: [mm] \( \Phi(x, y)=\left(\begin{array}{c}x \\ y \\ 0\end{array}\right),(x, [/mm] y) [mm] \in [/mm] D=[-1,1] [mm] \times[0,2], \hat{n}=\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right) \)
[/mm]
[mm] \( \iint_{\partial K_{2}} [/mm] w [mm] \cdot \hat{n} [/mm] d [mm] \mathcal{O}=\iint_{D}\left(\begin{array}{c}x \\ y^{2} \\ a\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right) [/mm] d(x, [mm] y)=\int \limits_{0}^{2} \int \limits_{-1}^{1}-a [/mm] d x d y
[mm] =\int \limits_{0}^{2}[-a x]_{-1}^{1} [/mm] d [mm] y=\int \limits_{0}^{2}-2 [/mm] a d y=[-2 a [mm] y]_{0}^{2}=-4 [/mm] a
3. Vorderseite: [mm] \( \Phi(x, z)=\left(\begin{array}{c}x \\ 0 \\ z\end{array}\right),(x, [/mm] z) [mm] \in [/mm] D=[-1,1] [mm] \times\left[0,1-x^{2}\right], \hat{n}=\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right) \)
[/mm]
[mm] \( \iint_{\partial K_{3}} [/mm] w [mm] \cdot \hat{n} [/mm] d [mm] \mathcal{O}=\iint_{D}\left(\begin{array}{l}x \\ 0 \\ a\end{array}\right) \cdot\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right) [/mm] d(x, [mm] y)=\iint_{D} [/mm] 0 d(x, y)=0
4. Rückseite: [mm] \( \Phi(x, y)=\left(\begin{array}{c}x \\ 2 \\ z\end{array}\right),(x, [/mm] z) [mm] \in [/mm] D=[-1,1] [mm] \times\left[0,1-x^{2}\right], \hat{n}=\left(\begin{array}{c}0 \\ 1 \\ 0\end{array}\right) \)
[/mm]
[mm] \[
[/mm]
[mm] \begin{aligned}
\iint_{\partial K_{4}} w \cdot \hat{n} d \mathcal{O} &=\iint_{D}\left(\begin{array}{c}
x \\
4 \\
a
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right) d(x, y)=\int \limits_{-1}^{1} \int \limits_{0}^{1-x^{2}} 4 d z d x \\
&=\int \limits_{-1}^{1}[4 z]_{0}^{1-x^{2}} d x=\int \limits_{-1}^{1} 4-4 x^{2} d x=\left[4 x-\frac{4}{3} x^{3}\right]_{-1}^{1}=8-\frac{8}{3}=\frac{16}{3}
\end{aligned}
[/mm]
Insgesamt:
[mm] \[
[/mm]
[mm] \iint_{\partial K} [/mm] w [mm] \cdot \hat{n} [/mm] d [mm] \mathcal{O}=\underline{8} [/mm] |
Hallo Zusammen,
wenn ich Boden, Vorderseite und Rückseite berechne muss ich erstmal [mm] \( \Phi( [/mm] ) aufstellen, danach muss ich w und [mm] \( \hat{n} \) [/mm] berechnen.
Ich habe aber null Ahnung wie man [mm] \( \Phi( [/mm] ) aufstellt und w und [mm] \( \hat{n} \) [/mm] berechnet.
Kann mir bitte jemand es erklären, aber so dass ich es auch verstehen kann.
Viele Grüße
Dateianhänge: Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:35 Sa 13.06.2020 | Autor: | meili |
Hallo Ataaga,
> Ein Körper K sei gegeben durch :
> [mm]\[[/mm]
> [mm]K=\left\{(x, y, z) \in \mathbb{R}^{3}: x \in[-1,1], y \in[0,2], z \in\left[0,1-x^{2}\right]\right\}[/mm]
>
> Außerdem sei für [mm]\([/mm] a [mm]\in \mathbb{R} \)[/mm] ein Vektorfeld
> gegeben durch:
> [mm]\[[/mm]
> w(x, y, [mm]z)=\left(\begin{array}{c}
x \\
y^{2} \\
a
\end{array}\right)[/mm]
>
> a) Berechnen Sie den Fluss des Vektorfelds w durch die
> Oberfläche des Körpers K direkt,
> d.h. durch Oberflächenintegrale.
> Berechnung von 4 Oberflächenintegralen.
Ab hier wird ja alles vorgerechnet für die Aufgabe.
Da es im [mm] $\IR^3$ [/mm] ist, kann man sich von der Anschauung leiten lassen.
Dach ist die komplizierteste Begrenzungsfläche des Körpers K, da sie
gebogen ist, parabelförmig nach unten geöffnet.
> Dach: Parametrisierung [mm]\( \Phi(x, y)=\left(\begin{array}{c}x \\ y \\ 1-x^{2}\end{array}\right),(x,[/mm]
> y) [mm]\in[/mm] D=[-1,1] [mm]\times[0,2] \)[/mm]
> [mm]\[[/mm]
Hier steht die Parametrisierung [mm]\( \Phi(x, y) [/mm] der Fläche. Man
gewinnt sie aus der Definition des Körpers K.
x nimmt die Werte des Intervalls [-1,1] an,
y nimmt die Werte des Intervalls [0,2] an,
z wird durch [mm] $1-x^2$ [/mm] bestimmt.
> [mm]\Rightarrow \Phi_{x}(x,[/mm] y) [mm]\times \Phi_{y}(x, y)=\left(\begin{array}{c}
1 \\
0 \\
-2 x
\end{array}\right) \times\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 x \\
0 \\
1
\end{array}\right)[/mm]
Hier wird der Normalenvektor [mm] $\( \hat{n} \) [/mm] = [mm] \vektor{2 x \\0 \\ 1}$ [/mm] für Dach berechnet.
Die Normalenvektoren sollen in jedem Punkt der Fläche, senkrecht auf der
Fläche stehen und vom Körper K aus gesehen nach außen gerichtet sein.
Wenn die Fläche nicht eben ist, bekommt man den Normalenvektor, indem
man für [mm] $\Phi_{x}(x, [/mm] y)$ die Parameterisierung der Fläche [mm] $\Phi(x, [/mm] y)$
komponentenweise nach x differenziert ( [mm] $\Phi_{x}(x, [/mm] y)$ ist der
Tangentialvektor der Fläche im Punkt (x, y, [mm] $1-x^2$) [/mm] in x-Richtung)
und für [mm] $\Phi_{y}(x, [/mm] y)$ die Parameterisierung der Fläche [mm] $\Phi(x, [/mm] y)$
komponentenweise nach y differenziert ( [mm] $\Phi_{y}(x, [/mm] y)$ ist der
Tangentialvektor der Fläche im Punkt (x, y, [mm] $1-x^2$) [/mm] in y-Richtung).
Mit dem Kreuzprodukt aus [mm] $\Phi_{x}(x, [/mm] y)$ und [mm] $\Phi_{y}(x, [/mm] y)$ erhält man $ [mm] \( \hat{n} \) [/mm] $
>
> [mm]\( \begin{aligned} \iint_{D K_{1}} w \cdot \hat{n} d \mathcal{O} &=\iint_{D} w(\Phi(x, y)) \cdot\left(\Phi_{x}(x, y) \times \Phi_{y}(x, y)\right) d(x, y) \\ &=\iint_{D}\left(\begin{array}{c}x \\ y^{2} \\ a\end{array}\right) \cdot\left(\begin{array}{c}2 x \\ 0 \\ 1\end{array}\right) d(x, y)=\int \limits_{0}^{2} \int \limits_{-1}^{1} 2 x^{2}+a d x d y \\ &=\int \limits_{0}^{2}\left[\frac{2}{3} x^{3}+a x\right]_{-1}^{1} d y=\int \limits_{0}^{2} \frac{4}{3}+2 a d y=\left[\left(\frac{4}{3}+2 a\right) y\right]_{0}^{2}=\frac{8}{3}+4 a \end{aligned} \)[/mm]
>
> 2. Boden: [mm]\( \Phi(x, y)=\left(\begin{array}{c}x \\ y \\ 0\end{array}\right),(x,[/mm]
> y) [mm]\in[/mm] D=[-1,1] [mm]\times[0,2], \hat{n}=\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right) \)[/mm]
Boden ist ein Quadrat in der xy-Ebene, deshalb ist in der Parameterisierung
die z-Komponente Null und der Normalenvektor zeigt in die negative z-Richtung.
Wenn man der Anschauung nicht traut, kann man das Verfahren zur
Berechnung des Normalenvektors wie bei der Fläche Dach durchführen.
>
> [mm]\( \iint_{\partial K_{2}}[/mm] w [mm]\cdot \hat{n}[/mm] d
> [mm]\mathcal{O}=\iint_{D}\left(\begin{array}{c}x \\ y^{2} \\ a\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)[/mm]
> d(x, [mm]y)=\int \limits_{0}^{2} \int \limits_{-1}^{1}-a[/mm] d x d
> y
> [mm]=\int \limits_{0}^{2}[-a x]_{-1}^{1}[/mm] d [mm]y=\int \limits_{0}^{2}-2[/mm]
> a d y=[-2 a [mm]y]_{0}^{2}=-4[/mm] a
>
> 3. Vorderseite: [mm]\( \Phi(x, z)=\left(\begin{array}{c}x \\ 0 \\ z\end{array}\right),(x,[/mm]
> z) [mm]\in[/mm] D=[-1,1] [mm]\times\left[0,1-x^{2}\right], \hat{n}=\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right) \)[/mm]
Vorderseite ist eine Fläche in der xz-Ebene nach oben begrenzt von einer
Parabel, deshalb ist die y-Komponente Null.
Normalenvektor zeigt in die negative y-Richtung.
>
> [mm]\( \iint_{\partial K_{3}}[/mm] w [mm]\cdot \hat{n}[/mm] d
> [mm]\mathcal{O}=\iint_{D}\left(\begin{array}{l}x \\ 0 \\ a\end{array}\right) \cdot\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right)[/mm]
> d(x, [mm]y)=\iint_{D}[/mm] 0 d(x, y)=0
>
> 4. Rückseite: [mm]\( \Phi(x, y)=\left(\begin{array}{c}x \\ 2 \\ z\end{array}\right),(x,[/mm]
> z) [mm]\in[/mm] D=[-1,1] [mm]\times\left[0,1-x^{2}\right], \hat{n}=\left(\begin{array}{c}0 \\ 1 \\ 0\end{array}\right) \)[/mm]
Rückseite ist eine Fläche in der Form wie die Vorderseite, aber mit konstantem Wert y=2.
Der Normalenvektor zeigt in die y-Richtung.
>
> [mm]\[[/mm]
> [mm]\begin{aligned}
\iint_{\partial K_{4}} w \cdot \hat{n} d \mathcal{O} &=\iint_{D}\left(\begin{array}{c}
x \\
4 \\
a
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right) d(x, y)=\int \limits_{-1}^{1} \int \limits_{0}^{1-x^{2}} 4 d z d x \\
&=\int \limits_{-1}^{1}[4 z]_{0}^{1-x^{2}} d x=\int \limits_{-1}^{1} 4-4 x^{2} d x=\left[4 x-\frac{4}{3} x^{3}\right]_{-1}^{1}=8-\frac{8}{3}=\frac{16}{3}
\end{aligned}[/mm]
>
> Insgesamt:
> [mm]\[[/mm]
> [mm]\iint_{\partial K}[/mm] w [mm]\cdot \hat{n}[/mm] d
> [mm]\mathcal{O}=\underline{8}[/mm]
>
> Hallo Zusammen,
> wenn ich Boden, Vorderseite und Rückseite berechne muss
> ich erstmal [mm]\( \Phi([/mm] ) aufstellen, danach muss ich w und [mm]\( \hat{n} \)[/mm]
> berechnen.
> Ich habe aber null Ahnung wie man [mm]\( \Phi([/mm] ) aufstellt
> und w und [mm]\( \hat{n} \)[/mm] berechnet.
w ist in der Aufgabe gegeben. $w(x,y,z) = [mm] \vektor{x \\ y^2 \\ a}$. [/mm]
Eigentlich hängt dieses w nur von x und y ab. Wenn die Parametrisierung [mm] $\Phi$ [/mm] der jeweiligen Fläche
feste Werte für x oder y enthält, werden diese in w eingesetzt
z.B. für die Vorderseite y=0 oder für die Rückseite y=2.
Variieren x und y in der Parametrisierung [mm] $\Phi$ [/mm] der jeweiligen Fläche nimmt man w wie gegeben.
>
> Kann mir bitte jemand es erklären, aber so dass ich es
> auch verstehen kann.
Man kann es versuchen, aber man kann nie wissen, ob du es dann verstehen kannst.
>
> Viele Grüße
>
Gruß
meili
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:00 So 14.06.2020 | Autor: | Ataaga |
Hallo,
ich habe alles verstanden bis:
> > 2. Boden: [mm]\( \Phi(x, y)=\left(\begin{array}{c}x \\ y \\ 0\end{array}\right),(x,[/mm]
Hier haben wir doch bei z=0
Warum wurde unten für z: a gesetzt?
> > y) [mm]\in[/mm] D=[-1,1] [mm]\times[0,2], \hat{n}=\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right) \)[/mm]
>
> Boden ist ein Quadrat in der xy-Ebene, deshalb ist in der
> Parameterisierung die z-Komponente Null und der
> Normalenvektor zeigt in die negative z-Richtung.
>
> >
> > [mm]\( \iint_{\partial K_{2}}[/mm] w [mm]\cdot \hat{n}[/mm] d
> > [mm]\mathcal{O}=\iint_{D}\left(\begin{array}{c}x \\ y^{2} \\ a\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)[/mm]
Hier müsste doch doch bei z, Null stehen oder nicht?
also 0*a=0
> > d(x, [mm]y)=\int \limits_{0}^{2} \int \limits_{-1}^{1}-a[/mm] d x d
> > y
> > [mm]=\int \limits_{0}^{2}[-a x]_{-1}^{1}[/mm] d [mm]y=\int \limits_{0}^{2}-2[/mm]
> > a d y=[-2 a [mm]y]_{0}^{2}=-4[/mm] a
Hallo,
kannst du mir bitte erklären, wie du auf W kommst, wenn du die Vorderseite berechnest? Ansonsten habe ich alles verstanden.
Da steht ja w=(x,0,z)
Oben wurde [mm] w(x,y,z)=(x,y^2,a) [/mm] vorgegeben. Wieso hat sich w geändert?
Also wie kommt man auf W=(x,0,a) ???????
Bitte rechnerisch!
Liebe Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:25 So 14.06.2020 | Autor: | meili |
Hallo Ataaga,
> Hallo,
> ich habe alles verstanden bis:
>
> > > 2. Boden: [mm]\( \Phi(x, y)=\left(\begin{array}{c}x \\ y \\ 0\end{array}\right),(x, y) \in [.1, 1] \times [0, 2] [/mm]
[mm] $\Phi(x, [/mm] y)$ ist eine Parametrisierung der Fläche Boden
>
> Hier haben wir doch bei z=0
> Warum wurde unten für z: a gesetzt?
[mm]w(x,y)= \vektor{x \\ y^2 \\a}[/mm] ist das gegebene Vektorfeld
und wird so in das Integral eingesetzt, da in der Fläche Boden x und y
verschiedene Werte annehmen.
Die z-Komponente des Vektorfeldes ist konstant a egal bei welchem Punkt des [mm] $\IR^3$, [/mm]
(bei dem Vektorfeld in dieser Aufgabe) auch wenn die z-Komponente der Fläche,
durch die der Fluss des Vektorfeldes berechnet werden soll, Null ist.
>
> > > y) [mm]\in[/mm] D=[-1,1] [mm]\times[0,2], \hat{n}=\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right) \)[/mm]
[mm] $\hat{n}=\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)$ [/mm] ist der Normalenvektor auf dieser Fläche.
>
> >
> > Boden ist ein Quadrat in der xy-Ebene, deshalb ist in der
> > Parameterisierung die z-Komponente Null und der
> > Normalenvektor zeigt in die negative z-Richtung.
> >
> > >
> > > [mm]\( \iint_{\partial K_{2}}[/mm] w [mm]\cdot \hat{n}[/mm] d
> > > [mm]\mathcal{O}=\iint_{D}\left(\begin{array}{c}x \\ y^{2} \\ a\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)[/mm]
>
>
> Hier müsste doch doch bei z, Null stehen oder nicht?
> also 0*a=0
Nein, denn im Integral steht das Skalarprodukt aus dem Vektor des Vektorfeldes w und des Normalenvektors [mm] $\hat{n}$.
[/mm]
>
>
> > > d(x, [mm]y)=\int \limits_{0}^{2} \int \limits_{-1}^{1}-a[/mm] d x d
> > > y
> > > [mm]=\int \limits_{0}^{2}[-a x]_{-1}^{1}[/mm] d [mm]y=\int \limits_{0}^{2}-2[/mm]
> > > a d y=[-2 a [mm]y]_{0}^{2}=-4[/mm] a
>
>
> Hallo,
> kannst du mir bitte erklären, wie du auf W kommst, wenn
> du die Vorderseite berechnest? Ansonsten habe ich alles
> verstanden.
>
> Da steht ja w=(x,0,z)
>
> Oben wurde [mm]w(x,y,z)=(x,y^2,a)[/mm] vorgegeben. Wieso hat sich w
> geändert?
>
> Also wie kommt man auf W=(x,0,a) ???????
> Bitte rechnerisch!
Das Vektorfeld w hängt von x und y ab. Das Vektorfeld w ordnet jedem Punkt (x,y,z) des [mm] $\IR^3$ [/mm] einen Vektor, den Vektor [mm] $\vektor{x \\ y^2 \\ a}$ [/mm] zu.
In der gesamten Fläche Vorderseite ist y=0, da Vorderseite in der yz-Ebene liegt.
Wenn man das Vektorfeld w in der Fläche Vorderseite berechnet, setzt man y=0 in w ein:
[mm]w(x,0,z)=\vektor{x \\ 0^2 \\ a} = \vektor{x \\ 0 \\ a} [/mm]
Bei der Fläche Rücksteite ist konstant y=2, deshalb w in Rückseite:
[mm]w(x,2,z)=\vektor{x \\ 2^2 \\ a} = \vektor{x \\ 4 \\ a} [/mm]
>
>
> Liebe Grüße
>
Gru0
meili
>
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 22:37 Fr 03.07.2020 | Autor: | Ataaga |
Aufgabe | Hallo meili,
gibst du auch Nachhilfe Unterricht privat?
Gruß |
> Hallo Ataaga,
>
> > Hallo,
> > ich habe alles verstanden bis:
> >
> > > > 2. Boden: [mm]\( \Phi(x, y)=\left(\begin{array}{c}x \\ y \\ 0\end{array}\right),(x, y) \in [.1, 1] \times [0, 2][/mm]
> [mm]\Phi(x, y)[/mm] ist eine Parametrisierung der Fläche Boden
>
> >
> > Hier haben wir doch bei z=0
> > Warum wurde unten für z: a gesetzt?
> [mm]w(x,y)= \vektor{x \\ y^2 \\a}[/mm] ist das gegebene Vektorfeld
> und wird so in das Integral eingesetzt, da in der Fläche
> Boden x und y
> verschiedene Werte annehmen.
>
> Die z-Komponente des Vektorfeldes ist konstant a egal bei
> welchem Punkt des [mm]\IR^3[/mm],
> (bei dem Vektorfeld in dieser Aufgabe) auch wenn die
> z-Komponente der Fläche,
> durch die der Fluss des Vektorfeldes berechnet werden soll,
> Null ist.
>
> >
> > > > y) [mm]\in[/mm] D=[-1,1] [mm]\times[0,2], \hat{n}=\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right) \)[/mm]
>
> [mm]\hat{n}=\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)[/mm]
> ist der Normalenvektor auf dieser Fläche.
>
> >
> > >
> > > Boden ist ein Quadrat in der xy-Ebene, deshalb ist in der
> > > Parameterisierung die z-Komponente Null und der
> > > Normalenvektor zeigt in die negative z-Richtung.
> > >
> > > >
> > > > [mm]\( \iint_{\partial K_{2}}[/mm] w [mm]\cdot \hat{n}[/mm] d
> > > > [mm]\mathcal{O}=\iint_{D}\left(\begin{array}{c}x \\ y^{2} \\ a\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)[/mm]
> >
> >
> > Hier müsste doch doch bei z, Null stehen oder nicht?
> > also 0*a=0
> Nein, denn im Integral steht das Skalarprodukt aus dem
> Vektor des Vektorfeldes w und des Normalenvektors [mm]\hat{n}[/mm].
>
> >
> >
> > > > d(x, [mm]y)=\int \limits_{0}^{2} \int \limits_{-1}^{1}-a[/mm] d x d
> > > > y
> > > > [mm]=\int \limits_{0}^{2}[-a x]_{-1}^{1}[/mm] d [mm]y=\int \limits_{0}^{2}-2[/mm]
> > > > a d y=[-2 a [mm]y]_{0}^{2}=-4[/mm] a
> >
> >
> > Hallo,
> > kannst du mir bitte erklären, wie du auf W kommst,
> wenn
> > du die Vorderseite berechnest? Ansonsten habe ich alles
> > verstanden.
> >
> > Da steht ja w=(x,0,z)
> >
> > Oben wurde [mm]w(x,y,z)=(x,y^2,a)[/mm] vorgegeben. Wieso hat sich w
> > geändert?
> >
> > Also wie kommt man auf W=(x,0,a) ???????
> > Bitte rechnerisch!
> Das Vektorfeld w hängt von x und y ab. Das Vektorfeld w
> ordnet jedem Punkt (x,y,z) des [mm]\IR^3[/mm] einen Vektor, den
> Vektor [mm]\vektor{x \\ y^2 \\ a}[/mm] zu.
> In der gesamten Fläche Vorderseite ist y=0, da Vorderseite
> in der yz-Ebene liegt.
> Wenn man das Vektorfeld w in der Fläche Vorderseite
> berechnet, setzt man y=0 in w ein:
> [mm]w(x,0,z)=\vektor{x \\ 0^2 \\ a} = \vektor{x \\ 0 \\ a}[/mm]
>
>
> Bei der Fläche Rücksteite ist konstant y=2, deshalb w in
> Rückseite:
> [mm]w(x,2,z)=\vektor{x \\ 2^2 \\ a} = \vektor{x \\ 4 \\ a}[/mm]
>
> >
> >
> > Liebe Grüße
> >
> Gru0
> meili
> >
>
|
|
|
|